Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726884

RESUMEN

PURPOSE: To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework. METHODS: A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T1/T2 mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach. RESULTS: In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T1 and T2 error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T1/T2 measurement and significantly improved T1 precision by 20%-25%, T2 precision by 10%-15%, T1 repeatability by about 30%, and T2 repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time. CONCLUSION: The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T1/T2 measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.

2.
Magn Reson Med ; 89(2): 738-745, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161668

RESUMEN

PURPOSE: To develop a novel 3D abdominal CEST MRI technique at 3 T using MR multitasking, which enables entire-liver coverage with free-breathing acquisition. METHODS: k-Space data were continuously acquired with repetitive steady-state CEST (ss-CEST) modules. The stack-of-stars acquisition pattern was used for k-space sampling. MR multitasking was used to reconstruct motion-resolved 3D CEST images of 53 frequency offsets with entire-liver coverage and 2.0 × 2.0 × 6.0 mm3 spatial resolution. The total scan time was 9 min. The sensitivity of amide proton transfer (APT)-CEST (magnetization transfer asymmetry [MTRasym ] at 3.5 ppm) and glycogen CEST (glycoCEST) (mean MTRasym around 1.0 ppm) signals generated with the proposed method were tested with fasting experiments. RESULTS: Both APT-CEST and glycoCEST signals showed high sensitivity between post-fasting and post-meal acquisitions. APT-CEST and glycoCEST MTRasym signals from post-mean scans were significantly increased (APT-CEST: -0.019 ± 0.017 in post-fasting scans, 0.014 ± 0.021 in post-meal scans, p < 0.01; glycoCEST: 0.003 ± 0.009 in post-fasting scans, 0.027 ± 0.021 in post-meal scans, p < 0.01). CONCLUSION: The proposed 3D abdominal steady-state CEST method using MR multitasking can generate CEST images of the entire liver during free breathing.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Humanos , Imagen por Resonancia Magnética/métodos , Hígado/diagnóstico por imagen , Imagenología Tridimensional , Amidas
3.
Magn Reson Med ; 87(5): 2363-2371, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34843114

RESUMEN

PURPOSE: To perform fast 3D steady-state CEST (ss-CEST) imaging using MR Multitasking. METHODS: A continuous acquisition sequence with repetitive ss-CEST modules was developed. Each ss-CEST module contains a single-lobe Gaussian saturation pulse, followed by a spoiler gradient and eight FLASH readouts (one "training line" + seven "imaging lines"). Three-dimensional Cartesian encoding was used for k-space acquisition. Reconstructed CEST images were quantified with four-pool Lorentzian fitting. RESULTS: Steady-state CEST with whole-brain coverage was performed in 5.6 s per saturation frequency offset at the spatial resolution of 1.7 × 1.7 × 3.0 mm3 . The total scan time was 5.5 min for 55 different frequency offsets. Quantitative CEST maps from multipool fitting showed consistent image quality across the volume. CONCLUSION: Three-dimensional ss-CEST with whole-brain coverage can be done at 3 T within 5.5 min using MR Multitasking.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Distribución Normal
4.
Magn Reson Med ; 88(4): 1748-1763, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35713184

RESUMEN

PURPOSE: To develop a free-breathing, non-electrocardiogram technique for simultaneous myocardial T1 , T2 , T2 *, and fat-fraction (FF) mapping in a single scan. METHODS: The MR Multitasking framework is adapted to quantify T1 , T2 , T2 *, and FF simultaneously. A variable TR scheme is developed to preserve temporal resolution and imaging efficiency. The underlying high-dimensional image is modeled as a low-rank tensor, which allows accelerated acquisition and efficient reconstruction. The accuracy and/or repeatability of the technique were evaluated on static and motion phantoms, 12 healthy volunteers, and 3 patients by comparing to the reference techniques. RESULTS: In static and motion phantoms, T1 /T2 /T2 */FF measurements showed substantial consistency (R > 0.98) and excellent agreement (intraclass correlation coefficient > 0.93) with reference measurements. In human subjects, the proposed technique yielded repeatable T1 , T2 , T2 *, and FF measurements that agreed with those from references. CONCLUSIONS: The proposed free-breathing, non-electrocardiogram, motion-resolved Multitasking technique allows simultaneous quantification of myocardial T1 , T2 , T2 *, and FF in a single 2.5-min scan.


Asunto(s)
Corazón , Interpretación de Imagen Asistida por Computador , Corazón/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Miocardio , Fantasmas de Imagen , Reproducibilidad de los Resultados
5.
Magn Reson Med ; 87(1): 120-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418152

RESUMEN

PURPOSE: To develop a 3D multitasking multi-echo (MT-ME) technique for the comprehensive characterization of liver tissues with 5-min free-breathing acquisition; whole-liver coverage; a spatial resolution of 1.5 × 1.5 × 6 mm3 ; and simultaneous quantification of T1 , water-specific T1 (T1w ), proton density fat fraction (PDFF), and R2∗ . METHODS: Six-echo bipolar spoiled gradient echo readouts following inversion recovery preparation was performed to generate T1 , water/fat, and R2∗ contrast. MR multitasking was used to reconstruct the MT-ME images with 3 spatial dimensions: 1 T1 recovery dimension, 1 multi-echo dimension, and 1 respiratory dimension. A basis function-based approach was developed for T1w quantification, followed by the estimation of R2∗ and T1 -corrected PDFF. The intrasession repeatability and agreement against references of MT-ME measurements were tested on a phantom and 15 clinically healthy subjects. In addition, 4 patients with confirmed liver diseases were recruited, and the agreement between MT-ME measurements and references was assessed. RESULTS: MT-ME produced high-quality, coregistered T1 , T1w , PDFF, and R2∗ maps with good intrasession repeatability and substantial agreement with references on phantom and human studies. The intra-class coefficients of T1 , T1w , PDFF, and R2∗ from the repeat MT-ME measurements on clinically healthy subjects were 0.989, 0.990, 0.999, and 0.988, respectively. The intra-class coefficients of T1 , PDFF, and R2∗ between the MT-ME and reference measurements were 0.924, 0.987, and 0.975 in healthy subjects and 0.980, 0.999, and 0.998 in patients. The T1w was independent to PDFF (R = -0.029, P = .904). CONCLUSION: The proposed MT-ME technique quantifies T1 , T1w , PDFF, and R2∗ simultaneously and is clinically promising for the comprehensive characterization of liver tissue properties.


Asunto(s)
Protones , Agua , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen , Reproducibilidad de los Resultados
6.
Magn Reson Med ; 87(3): 1375-1389, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34708438

RESUMEN

PURPOSE: To develop a new technique that enables simultaneous quantification of whole-brain T1 , T2 , T2∗ , as well as susceptibility and synthesis of six contrast-weighted images in a single 9.1-minute scan. METHODS: The technique uses hybrid T2 -prepared inversion-recovery pulse modules and multi-echo gradient-echo readouts to collect k-space data with various T1, T2, and T2∗ weightings. The underlying image is represented as a six-dimensional low-rank tensor consisting of three spatial dimensions and three temporal dimensions corresponding to T1 recovery, T2 decay, and multi-echo behaviors, respectively. Multiparametric maps were fitted from reconstructed image series. The proposed method was validated on phantoms and healthy volunteers, by comparing quantitative measurements against corresponding reference methods. The feasibility of generating six contrast-weighted images was also examined. RESULTS: High quality, co-registered T1 , T2 , and T2∗ susceptibility maps were generated that closely resembled the reference maps. Phantom measurements showed substantial consistency (R2 > 0.98) with the reference measurements. Despite the significant differences of T1 (p < .001), T2 (p = .002), and T2∗ (p = 0.008) between our method and the references for in vivo studies, excellent agreement was achieved with all intraclass correlation coefficients greater than 0.75. No significant difference was found for susceptibility (p = .900). The framework is also capable of synthesizing six contrast-weighted images. CONCLUSION: The MR Multitasking-based 3D brain mapping of T1 , T2 , T2∗ , and susceptibility agrees well with the reference and is a promising technique for multicontrast and quantitative imaging.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Fenómenos Magnéticos , Fantasmas de Imagen
7.
Heliyon ; 10(10): e30163, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813142

RESUMEN

Inkjet printing is a prevalent printing technology that finds extensive applications in diverse fields, including mechanical manufacturing and flexible electronics. Enhancing the quality of inkjet printing has consistently piqued significant interest, with the goal of attaining superior printing resolution, precise color reproduction, and finer image details. This article begins with an overview of the current advancements in inkjet printing, elaborating on four key principles and technologies of inkjet printing. Subsequently, the article delves into the application and research progress related to enhancing inkjet printing quality across various fields. This exploration is structured around four perspectives: printing equipment, substrates, ink properties, and emerging printing technologies. Significant enhancements in inkjet printing quality, resulting in improved image details and color reproduction effects, can be attained by optimizing ink formulations, refining inkjet head design, and selecting suitable substrates and surface treatment methods. To conclude, this article addresses and summarizes future technological advancements aimed at enhancing inkjet printing quality.

8.
Front Cardiovasc Med ; 10: 1160183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790594

RESUMEN

T1 mapping is becoming a staple magnetic resonance imaging method for diagnosing myocardial diseases such as ischemic cardiomyopathy, hypertrophic cardiomyopathy, myocarditis, and more. Clinically, most T1 mapping sequences acquire a single slice at a single cardiac phase across a 10 to 15-heartbeat breath-hold, with one to three slices acquired in total. This leaves opportunities for improving patient comfort and information density by acquiring data across multiple cardiac phases in free-running acquisitions and across multiple respiratory phases in free-breathing acquisitions. Scanning in the presence of cardiac and respiratory motion requires more complex motion characterization and compensation. Most clinical mapping sequences use 2D single-slice acquisitions; however newer techniques allow for motion-compensated reconstructions in three dimensions and beyond. To further address confounding factors and improve measurement accuracy, T1 maps can be acquired jointly with other quantitative parameters such as T2, T2∗, fat fraction, and more. These multiparametric acquisitions allow for constrained reconstruction approaches that isolate contributions to T1 from other motion and relaxation mechanisms. In this review, we examine the state of the literature in motion-corrected and motion-resolved T1 mapping, with potential future directions for further technical development and clinical translation.

9.
Front Cardiovasc Med ; 9: 833257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310971

RESUMEN

The aim of this study is to simultaneously quantify T1/T2 across three slices of the left-ventricular myocardium without breath-holds or ECG monitoring, all within a 3 min scan. Radial simultaneous multi-slice (SMS) encoding, self-gating, and image reconstruction was incorporated into the cardiovascular magnetic resonance (CMR) Multitasking framework to simultaneously image three short-axis slices. A T2prep-IR FLASH sequence with two flip angles was designed and implemented to allow B1+-robust T1 and T2 mapping. The proposed Multitasking-SMS method was validated in a standardized phantom and 10 healthy volunteers, comparing T1 and T2 measurements and scan-rescan repeatability against corresponding reference methods in one layer of phantom vials and in 16 American Heart Association (AHA) myocardial segments. In phantom, Multitasking-SMS T1/T2 measurements showed substantial correlation (R 2 > 0.996) and excellent agreement [intraclass correlation coefficients (ICC) ≥ 0.999)] with reference measurements. In healthy volunteers, Multitasking-SMS T1/T2 maps reported similar myocardial T1/T2 values (1,215 ± 91.0/41.5 ± 6.3 ms) to the reference myocardial T1/T2 values (1,239 ± 67.5/42.7 ± 4.1 ms), with P = 0.347 and P = 0.296, respectively. Bland-Altman analyses also demonstrated good in vivo repeatability in both the multitasking and references, with segment-wise coefficients of variation of 4.7% (multitasking T1), 8.9% (multitasking T2), 2.4% [modified look-locker inversion recovery (MOLLI)], and 4.6% (T2-prep FLASH), respectively. In summary, multitasking-SMS is feasible for free-breathing, non-ECG, myocardial T1/T2 quantification in 16 AHA segments over 3 short-axis slices in 3 min. The method shows the great potential for reducing exam time for quantitative CMR without ECG or breath-holds.

10.
Soft Robot ; 6(3): 399-413, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31180823

RESUMEN

This article describes a worm-like soft robot capable of operating in complicated tubular environments, such as the complex pipeline with different diameters, water, oil, and gas environments, or the clinical application in natural orifice transluminal endoscopic surgery. The robot is completely soft and robust, and consists of one multidegree of freedom (DoF) extension module and two clampers for locomotion and steering. The multi-DoF extension module is able to adjust the heading direction in the three-dimensional space. The clamper has a basic expansion module structure and detachable sucking module structure. The combined clamping principle for sticking to the inner wall can be reconfigurable to adapt the tubes with multiple tubular scales and super elastic materials. For fabrication of the mechanical structure, a low-cost and time-efficient method is proposed in this article. Based on our proposed robot, a series of phantom and application experiments are performed. The results demonstrate that the soft robot can freely bend and elongate with the entire soft body, and pass through tubes with changing diameters or branches, dry tubes, liquid environments, hard surfaces, and even soft deformable tubes. It has the ability to remove a load of >10 times its own weight. In addition, an additional visualization unit, biopsy, and electromagnetic sensor are mounted on the robot tip for the real-time image inspection, manipulation, and robot tracking. The proposed worm-like soft robot is compact, flexible-actuated, and sufficiently safe, as well as extensible. Its ability to move in the complex unstructured environment shows a great potential for search and medical applications.


Asunto(s)
Robótica/instrumentación , Diseño de Equipo , Locomoción , Modelos Biológicos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA