Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(17): 10979-11024, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38635910

RESUMEN

Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.


Asunto(s)
Nanomedicina , Humanos , Animales , Nanoestructuras/química , Genómica
2.
Food Chem X ; 21: 101237, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38426075

RESUMEN

Diosmin is a flavonoid derived from plants, possessing anti-inflammatory, antioxidant, antidiabetic, neuroprotective and cardiovascular protective properties. However, diosmin has low solubility in water, leading to low bioavailability. In this study, we constructed bilayer nanoparticles with trimethyl chitosan and soy peptides to improve the oral bioaccessibility and bioavailability of diosmin, and determined the characteristics and antioxidant properties of the diosmin-loaded nanoparticles. The results showed that the size of the nanoparticles was around 250 nm with the encapsulation efficiency higher than 97 %, and the nanoparticles were stable under regular conditions. In vitro digestion suggested the nanoparticles could protect diosmin from releasing in gastric digestion but promote the bioaccessibility of diosmin in intestine. Furthermore, the diosmin-loaded nanoparticles presented excellent antioxidant activities in vitro and significantly decreased the Lipopolysaccharides-induced brain Malondialdehyde (MDA) level by oral administration. Therefore, the reported nanoparticles may be an effective platform for improving the oral bioavailability of diosmin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA