Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(2): 701-714, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38241468

RESUMEN

Worldwide Candida albicans infections cause a huge burden in healthcare and the efficacy of traditional antifungals is diminished because of the rapid development of antifungal resistance. It is necessary to develop new antifungals or new strategies to make multidrug-resistant (MDR) C. albicans to resensitize to existing antifungal drugs. In this work, a series of 4-arm polypeptoids (FAPs) were synthesized through grafting linear ε-l-lysine or δ-ornithine-based oligopeptides to a trimeric lysine core. The most potent 4R-O7 exhibited excellent activities toward three sensitive and two MDR C. albicans strains with MIC values as low as 24-48 µg/mL (vs 375 µg/mL for ε-polylysine, ε-PL). The mechanism studies revealed that 4R-O7 penetrated the cell membrane and generated ROS to kill cells. 4R-O7 exhibited a synergistic effect (FICI < 0.5) with voriconazole (VOR) and also assisted VOR to restore its efficacy to MDR C. albicans. In addition, the combined use of 4R-O7 and VOR significantly improved the elimination efficacy of mature C. albicans biofilms and enhanced the potency in a mouse subcutaneous C. albicans infection model.


Asunto(s)
Antifúngicos , Candida albicans , Animales , Ratones , Voriconazol/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Pruebas de Sensibilidad Microbiana
2.
Biomater Sci ; 11(23): 7588-7597, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37823351

RESUMEN

Invasive fungal infections pose a crucial threat to public health and are an under-recognized component of antimicrobial resistance, which is an emerging crisis worldwide. Here we designed and synthesized a panel of multi-arm ε-polylysines (ε-mPLs, nR-Km) with a precise number of n = 3-6 arms of ε-oligo(L-lysine)s and a precise arm length of m = 3-7 ε-lysine residues. ε-mPLs have good biocompatibility and exhibited broad-spectrum antifungal activities towards Aspergillus, Mucorales and Candida species, and their antifungal activities increased with residue arm length. Among these ε-mPLs, 3R-K7 showed high antifungal activity against C. albicans with a MIC value of as low as 24 µg mL-1 (only 1/16th that of ε-PL) and also exhibited similar antifungal activity towards the clinically isolated multi-drug resistant (MDR) C. albicans strain. Furthermore, 3R-K7 could inhibit the formation of C. albicans biofilms and kill the cells within mature C. albicans biofilms. Mechanistic studies proved that 3R-K7 killed fungal cells by entering the cells to generate reactive oxygen species (ROS) and induce cell apoptosis. An in vivo study showed that 3R-K7 significantly increased the survival rate of mice in a systemic murine candidiasis model, demonstrating that ε-mPL has great potential as a new antifungal agent.


Asunto(s)
Antifúngicos , Candidiasis , Animales , Ratones , Antifúngicos/farmacología , Candida , Polilisina , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Candida albicans , Pruebas de Sensibilidad Microbiana , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA