RESUMEN
Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.
Asunto(s)
Proteínas de Caenorhabditis elegans , Discinesias , Acetilcolinesterasa/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cafeína/farmacología , Evaluación Preclínica de Medicamentos , Discinesias/tratamiento farmacológico , Discinesias/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/farmacología , Proteínas de Unión al GTP/genética , Mutación , Neurotransmisores/metabolismoRESUMEN
Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.
Asunto(s)
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Masculino , Microfluídica/métodos , Persona de Mediana Edad , Neuroimagen/métodos , Pruebas Neuropsicológicas , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patologíaRESUMEN
Targeting pharmaceuticals through the endothelial barrier is crucial for drug delivery. In this context, cavitation-assisted permeation shows promise for effective and reversible opening of intercellular junctions. A vessel-on-a-chip is exploited to investigate and quantify the effect of ultrasound-excited microbubbles-stable cavitation-on endothelial integrity. In the vessel-on-a-chip, the endothelial cells form a complete lumen under physiological shear stress, resulting in intercellular junctions that exhibit barrier functionality. Immunofluorescence microscopy is exploited to monitor vascular integrity following vascular endothelial cadherin staining. It is shown that microbubbles amplify the ultrasound effect, leading to the formation of interendothelial gaps that cause barrier permeabilization. The total gap area significantly increases with pressure amplitude compared to the control. Gap opening is fully reversible with gap area distribution returning to the control levels 45 min after insonication. The proposed integrated platform allows for precise and repeatable in vitro measurements of cavitation-enhanced endothelium permeability and shows potential for validating irradiation protocols for in vivo applications.
Asunto(s)
Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microburbujas , Microscopía Confocal , Microscopía FluorescenteRESUMEN
In the emerging field of whole-brain imaging at single-cell resolution, which represents one of the new frontiers to investigate the link between brain activity and behavior, the nematode Caenorhabditis elegans offers one of the most characterized models for systems neuroscience. Whole-brain recordings consist of 3D time series of volumes that need to be processed to obtain neuronal traces. Current solutions for this task are either computationally demanding or limited to specific acquisition setups. Here, we propose See Elegans, a direct programming algorithm that combines different techniques for automatic neuron segmentation and tracking without the need for the RFP channel, and we compare it with other available algorithms. While outperforming them in most cases, our solution offers a novel method to guide the identification of a subset of head neurons based on position and activity. The built-in interface allows the user to follow and manually curate each of the processing steps. See Elegans is thus a simple-to-use interface aimed at speeding up the post-processing of volumetric calcium imaging recordings while maintaining a high level of accuracy and low computational demands. (Contact: enrico.lanza@iit.it).
Asunto(s)
Caenorhabditis elegans , Neuronas , Animales , Neuronas/fisiología , Caenorhabditis elegans/fisiología , Microscopía Fluorescente/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , AlgoritmosRESUMEN
Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon - the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.
RESUMEN
An endothelial-lined blood vessel model is obtained in a PDMS (Polydimethylsiloxane) microfluidic system, where vascular endothelial cells are grown under physiological shear stress, allowing -like maturation. This experimental model is employed for enhanced drug delivery studies, aimed at characterising the increase in endothelial permeability upon microbubble-enhanced ultrasound-induced (USMB) cavitation. We developed a multi-step protocol to couple the optical and the acoustic set-ups, thanks to a 3D-printed insonation chamber, provided with direct optical access and a support for the US transducer. Cavitation-induced interendothelial gap opening is then analysed using a customised code that quantifies gap area and the relative statistics. We show that exposure to US in presence of microbubbles significantly increases endothelial permeability and that tissue integrity completely recovers within 45 min upon insonation. This protocol, along with the versatility of the microfluidic platform, allows to quantitatively characterise cavitation-induced events for its potential employment in clinics.
RESUMEN
AWC olfactory neurons are fundamental for chemotaxis toward volatile attractants in Caenorhabditis elegans. Here, it is shown that AWCON responds not only to chemicals but also to mechanical stimuli caused by fluid flow changes in a microfluidic device. The dynamics of calcium events are correlated with the stimulus amplitude. It is further shown that the mechanosensitivity of AWCON neurons has an intrinsic nature rather than a synaptic origin, and the calcium transient response is mediated by TAX-4 cGMP-gated cation channel, suggesting the involvement of one or more "odorant" receptors in AWCON mechano-transduction. In many cases, the responses show plateau properties resembling bistable calcium dynamics where neurons can switch from one stable state to the other. To investigate the unprecedentedly observed mechanosensitivity of AWCON neurons, a novel microfluidic device is designed to minimize the fluid shear flow in the arena hosting the nematodes. Animals in this device show reduced neuronal activation of AWCON neurons. The results observed indicate that the tangential component of the mechanical stress is the main contributor to the mechanosensitivity of AWCON . Furthermore, the microfluidic platform, integrating shearless perfusion and calcium imaging, provides a novel and more controlled solution for in vivo analysis both in micro-organisms and cultured cells.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Dispositivos Laboratorio en un Chip , Neuronas , OlfatoRESUMEN
Chemosensory receptors play a crucial role in distinguishing the wide range of volatile/soluble molecules by binding them with high accuracy. Chemosensation is the main sensory modality in organisms lacking long-range sensory mechanisms like vision/hearing. Despite its low number of sensory neurons, the nematode Caenorhabditis elegans possesses several chemosensory receptors, allowing it to detect about as many odorants as mammals. Here, we show that C. elegans displays attraction towards urine samples of women with breast cancer, avoiding control ones. Behavioral assays on animals lacking AWC sensory neurons demonstrate the relevance of these neurons in sensing cancer odorants: calcium imaging on AWC increases the accuracy of the discrimination (97.22%). Also, chemotaxis assays on animals lacking GPCRs expressed in AWC allow to identify receptors involved in binding cancer metabolites, suggesting that an alteration of a few metabolites is sufficient for the cancer discriminating behavior of C. elegans, which may help identify a fundamental fingerprint of breast cancer.
Asunto(s)
Biomarcadores de Tumor/orina , Neoplasias de la Mama/orina , Caenorhabditis elegans/fisiología , Quimiotaxis , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiología , Femenino , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
The molecular mechanisms regulating the complex sensory system that underlies olfaction are still not completely understood. The compounds formed from the interaction of Olfactory Receptors (ORs) with volatile molecules play a crucial role in producing the sense of olfaction. Therefore, it is necessary to investigate the binding mechanisms between these receptors and small ligands. In this work, we focus our attention on C.elegans, this is a particularly suitable model organism because it is characterized by a nervous system composed of only 302 neurons. To study olfaction in C.elegans, we select 21 ORs from its olfactory neurons, and present a pipeline, consisting of several computational methods, with the aim of proposing a set of possible candidates for binding the selected C.elegans ORs. This pipeline introduces an approach based on the selection of templates, and threading, that takes advantage of the structural redundancy among membrane receptors. This procedure is widely replicable because it is based on algorithms that are publicly available and are freely hosted on institutional servers.
Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Odorantes/análisis , Receptores Odorantes/química , Animales , Sitios de Unión , Proteínas de Caenorhabditis elegans/metabolismo , Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Receptores Odorantes/metabolismoRESUMEN
A novel design for the classical microfluidic device known as T-junction is proposed with the purpose of obtaining a simultaneous measurement of the in-plane velocity components in two orthogonal planes. A crucial feature of the proposed configuration is that all three velocity components are available along the intersection of the two planes. A dedicated optical set-up is developed to convey the two simultaneous views from the orthogonal planes into the sensor of a single camera, where a compound image is formed showing on either half one of the two views. A commercial micro-particle image velocimetry system is used to measure the velocity in the two planes. Feeding the T-junction with a liquid continuous phase and a dispersed gas phase, the velocity is measured by phase averaging along the bubble formation and break-up process showing the potentialities of the new design. The accuracy analysis shows that the error is dominated by a systematic component due to the thickness of the measurement slice. The error can be reduced by applying confocal microscopy to the present system with no further modifications so as to reduce the thickness of the measurement slab thereby reducing the error. Moreover, by sweeping the planes across the region of interest, a full three-dimensional reconstruction of the velocity field can be readily obtained. Finally, the simultaneous views offer the possibility to extract the principal curvatures of the bubble meniscus thereby providing access to the Laplace pressure.