Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7919): 617-622, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794473

RESUMEN

Strychnine is a natural product that, through isolation, structural elucidation and synthetic efforts, shaped the field of organic chemistry. Currently, strychnine is used as a pesticide to control rodents1 because of its potent neurotoxicity2,3. The polycyclic architecture of strychnine has inspired chemists to develop new synthetic transformations and strategies to access this molecular scaffold4, yet it is still unknown how plants create this complex structure. Here we report the biosynthetic pathway of strychnine, along with the related molecules brucine and diaboline. Moreover, we successfully recapitulate strychnine, brucine and diaboline biosynthesis in Nicotiana benthamiana from an upstream intermediate, thus demonstrating that this complex, pharmacologically active class of compounds can now be harnessed through metabolic engineering approaches.


Asunto(s)
Vías Biosintéticas , Ingeniería Metabólica , Estricnina , Vías Biosintéticas/genética , Estricnina/análogos & derivados , Estricnina/biosíntesis , Estricnina/química , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo
2.
Nat Chem Biol ; 19(8): 1031-1041, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188960

RESUMEN

Advances in omics technologies now permit the generation of highly contiguous genome assemblies, detection of transcripts and metabolites at the level of single cells and high-resolution determination of gene regulatory features. Here, using a complementary, multi-omics approach, we interrogated the monoterpene indole alkaloid (MIA) biosynthetic pathway in Catharanthus roseus, a source of leading anticancer drugs. We identified clusters of genes involved in MIA biosynthesis on the eight C. roseus chromosomes and extensive gene duplication of MIA pathway genes. Clustering was not limited to the linear genome, and through chromatin interaction data, MIA pathway genes were present within the same topologically associated domain, permitting the identification of a secologanin transporter. Single-cell RNA-sequencing revealed sequential cell-type-specific partitioning of the leaf MIA biosynthetic pathway that, when coupled with a single-cell metabolomics approach, permitted the identification of a reductase that yields the bis-indole alkaloid anhydrovinblastine. We also revealed cell-type-specific expression in the root MIA pathway.


Asunto(s)
Antineoplásicos , Catharanthus , Plantas Medicinales , Catharanthus/genética , Plantas Medicinales/metabolismo , Multiómica , Alcaloides Indólicos/metabolismo , Antineoplásicos/metabolismo , Monoterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(42): e2211254119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36227916

RESUMEN

Iridoid monoterpenes, widely distributed in plants and insects, have many ecological functions. While the biosynthesis of iridoids has been extensively studied in plants, little is known about how insects synthesize these natural products. Here, we elucidated the biosynthesis of the iridoids cis-trans-nepetalactol and cis-trans-nepetalactone in the pea aphid Acyrthosiphon pisum (Harris), where they act as sex pheromones. The exclusive production of iridoids in hind legs of sexual female aphids allowed us to identify iridoid genes by searching for genes specifically expressed in this tissue. Biochemical characterization of candidate enzymes revealed that the iridoid pathway in aphids proceeds through the same sequence of intermediates as described for plants. The six identified aphid enzymes are unrelated to their counterparts in plants, conclusively demonstrating an independent evolution of the entire iridoid pathway in plants and insects. In contrast to the plant pathway, at least three of the aphid iridoid enzymes are likely membrane bound. We demonstrated that a lipid environment facilitates the cyclization of a reactive enol intermediate to the iridoid cyclopentanoid-pyran scaffold in vitro, suggesting that membranes are an essential component of the aphid iridoid pathway. Altogether, our discovery of this complex insect metabolic pathway establishes the genetic and biochemical basis for the formation of iridoid sex pheromones in aphids, and this discovery also serves as a foundation for understanding the convergent evolution of complex metabolic pathways between kingdoms.


Asunto(s)
Áfidos , Productos Biológicos , Atractivos Sexuales , Animales , Áfidos/genética , Áfidos/metabolismo , Productos Biológicos/metabolismo , Iridoides/química , Iridoides/metabolismo , Lípidos , Monoterpenos/metabolismo , Feromonas/metabolismo , Plantas/metabolismo , Atractivos Sexuales/genética , Atractivos Sexuales/metabolismo
4.
J Transl Med ; 22(1): 424, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704581

RESUMEN

BACKGROUND: The measurement of the skin carotenoids using the Veggie Meter® has emerged as a rapid objective method for assessing fruit and vegetable intake, highly recommended by the Mediterranean Diet (MD), which represents one of the healthiest dietary patterns, worldwide. This study aimed to examine differences in skin carotenoid content and degree of adherence to the MD pattern between two adult populations from Southern Italy and the Dominican Republic. METHODS: This cross-sectional study enrolled a total of 995 adults, 601 subjects from Italy and 394 from the Dominican Republic. All participants underwent anthropometric measurements and skin carotenoid assessment by Veggie Meter®. Adherence to the MD and lifestyle were evaluated using the Mediterranean Diet Adherence Screener (MEDAS) and the Mediterranean Lifestyle Index (MEDLIFE) questionnaires. Correlations between the skin carotenoid and MEDAS score were estimated using Pearson's correlation coefficient. Multiple linear regression models were created to determine variables that affect skin carotenoid score for both populations. RESULTS: Mean total skin carotenoids were higher in the Italian compared to the Dominican Republic population (342.4 ± 92.4 vs 282.9 ± 90.3; p < 0.005) regardless of sex (women: 318.5 ± 88.9 vs 277.3 ± 91.9, p < 0.005 and men: 371.7 ± 88.3 vs 289.5 ± 88.1, p < 0.005), and remaining statistically significant after age-adjustment of the Dominican Republic sample. Using the MEDAS questionnaire, we found a higher MD adherence score in the Italian than in the Dominican Republic population also after age-adjusting data (7.8 ± 2.1 vs 6.2 ± 3.7; p < 0.005) and even when categorized by sex (Italian vs age-adjusted Dominican Republic women: 7.9 ± 2.1 vs 6.3 ± 2.6; Italian vs age-adjusted Dominican Republic men: 7.7 ± 2.2 vs 6.0 ± 4.7; p < 0.005). Using the MEDLIFE test, total Italians presented a lower score with respect to the age-adjusted Dominican Republic population (3.2 ± 1.2 vs 3.4 ± 1.4; p < 0.05). In multiple regression analysis, skin carotenoids were associated with sex and negatively associated with BMI in the Italian population (sex: ß: 54.95; 95% CI: 40.11, 69.78; p < 0.0001; BMI: ß: - 1.60; 95% CI: - 2.98,0.86; p = 0.03), while they resulted associated with age and sex in the Dominican Republic population (age: ß: 2.76; 95% CI: 1.92, 3.56; p < 0.001; sex: ß: 23.29; 95% CI: 5.93, 40.64; p = 0.009). Interestingly, skin carotenoids were positively correlated with MEDAS score in both populations (Italy: r = 0.03, p < 0.0001, Dominican Republic: r = 0.16, p = 0.002). CONCLUSIONS: This study provides the assessment of the adherence to the MD and skin carotenoid content in adults living in Southern Italy and the Dominican Republic, showing a higher MD adherence score and a skin carotenoid content in inhabitants from the Mediterranean region. Our findings highlight the need to globally encourage fruit and vegetable intake, particularly in non-Mediterranean area.


Asunto(s)
Carotenoides , Dieta Mediterránea , Piel , Humanos , Italia , República Dominicana , Carotenoides/análisis , Carotenoides/metabolismo , Femenino , Masculino , Adulto , Piel/metabolismo , Persona de Mediana Edad , Estudios Transversales , Cooperación del Paciente/estadística & datos numéricos , Encuestas y Cuestionarios
6.
Angew Chem Int Ed Engl ; 62(35): e202304843, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37326625

RESUMEN

Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro-specific NRPS module completely switched substrate specificity to the non-standard amino acid piperazic acid (Piz) bearing a labile N-N bond. This success was achieved by UPLC-MS/MS-based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz-derived gramicidin S analogue. Thus, we give new impetus to the too-early dismissed idea that widely accessible low-throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.


Asunto(s)
Péptido Sintasas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Péptido Sintasas/metabolismo , Especificidad por Sustrato
7.
J Am Chem Soc ; 144(43): 19673-19679, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36240425

RESUMEN

Nature uses cycloaddition reactions to generate complex natural product scaffolds. Dehydrosecodine is a highly reactive biosynthetic intermediate that undergoes cycloaddition to generate several alkaloid scaffolds that are the precursors to pharmacologically important compounds such as vinblastine and ibogaine. Here we report how dehydrosecodine can be subjected to redox chemistry, which in turn allows cycloaddition reactions with alternative regioselectivity. By incubating dehydrosecodine with reductase and oxidase biosynthetic enzymes that act upstream in the pathway, we can access the rare pseudoaspidosperma alkaloids pseudo-tabersonine and pseudo-vincadifformine, both in vitro and by reconstitution in the plant Nicotiana benthamiana from an upstream intermediate. We propose a stepwise mechanism to explain the formation of the pseudo-tabersonine scaffold by structurally characterizing enzyme intermediates and by monitoring the incorporation of deuterium labels. This discovery highlights how plants use redox enzymes to enantioselectively generate new scaffolds from common precursors.


Asunto(s)
Alcaloides , Aspidosperma , Reacción de Cicloadición , Oxidación-Reducción , Reciclaje
8.
Plant Physiol ; 187(2): 846-857, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608956

RESUMEN

Specialized metabolites are chemically complex small molecules with a myriad of biological functions. To investigate plant-specialized metabolite biosynthesis more effectively, we developed an improved method for virus-induced gene silencing (VIGS). We designed a plasmid that incorporates fragments of both the target gene and knockdown marker gene (phytoene desaturase, PDS), which identifies tissues that have been successfully silenced in planta. To demonstrate the utility of this method, we used the terpenoid indole alkaloid (TIA) pathway in Madagascar periwinkle (Catharanthus roseus) as a model system. Catharanthus roseus is a medicinal plant well known for producing many bioactive compounds, such as vinblastine and vincristine. Our VIGS method enabled the discovery of a previously unknown biosynthetic enzyme, serpentine synthase (SS). This enzyme is a cytochrome P450 (CYP) that produces the ß-carboline alkaloids serpentine and alstonine, compounds with strong blue autofluorescence and potential pharmacological activity. The discovery of this enzyme highlights the complexity of TIA biosynthesis and demonstrates the utility of this improved VIGS method for discovering unidentified metabolic enzymes in plants.


Asunto(s)
Catharanthus/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Catharanthus/enzimología , Catharanthus/metabolismo , Silenciador del Gen , Genes de Plantas , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Transducción de Señal
9.
Nat Chem Biol ; 16(4): 383-386, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066966

RESUMEN

Cycloaddition reactions generate chemical complexity in a single step. Here we report the crystal structures of three homologous plant-derived cyclases involved in the biosynthesis of iboga and aspidosperma alkaloids. These enzymes act on the same substrate, named angryline, to generate three distinct scaffolds. Mutational analysis reveals how these highly similar enzymes control regio- and stereo-selectivity.


Asunto(s)
Alcaloides/biosíntesis , Aspidosperma/química , Tabernaemontana/química , Alcaloides/química , Carbazoles/química , Reacción de Cicloadición/métodos , Alcaloides Indólicos/química , Plantas/química
10.
Angew Chem Int Ed Engl ; 61(48): e202210934, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36198083

RESUMEN

Medium-chain alcohol dehydrogenases (ADHs) comprise a highly conserved enzyme family that catalyse the reversible reduction of aldehydes. However, recent discoveries in plant natural product biosynthesis suggest that the catalytic repertoire of ADHs has been expanded. Here we report the crystal structure of dihydroprecondylocarpine acetate synthase (DPAS), an ADH that catalyses the non-canonical 1,4-reduction of an α,ß-unsaturated iminium moiety. Comparison with structures of plant-derived ADHs suggest the 1,4-iminium reduction does not require a proton relay or the presence of a catalytic zinc ion in contrast to canonical 1,2-aldehyde reducing ADHs that require the catalytic zinc and a proton relay. Furthermore, ADHs that catalysed 1,2-iminium reduction required the presence of the catalytic zinc and the loss of the proton relay. This suggests how the ADH active site can be modified to perform atypical carbonyl reductions, providing insight into how chemical reactions are diversified in plant metabolism.


Asunto(s)
Alcohol Deshidrogenasa , Protones , Alcohol Deshidrogenasa/metabolismo , Plantas/metabolismo , Etanol , Catálisis , Zinc/metabolismo
11.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272759

RESUMEN

Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Halogenación/fisiología , Ácidos Indolacéticos/metabolismo , Aminoácidos/metabolismo , Fabaceae/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Indoles/metabolismo , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Triptófano/metabolismo
12.
J Am Chem Soc ; 141(33): 12979-12983, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31364847

RESUMEN

(-)-Ibogaine and (-)-voacangine are plant derived psychoactives that show promise as treatments for opioid addiction. However, these compounds are produced by hard to source plants, making these chemicals difficult for broad-scale use. Here we report the complete biosynthesis of (-)-voacangine, and de-esterified voacangine, which is converted to (-)-ibogaine by heating, enabling biocatalytic production of these compounds. Notably, (-)-ibogaine and (-)-voacangine are of the opposite enantiomeric configuration compared to the other major alkaloids found in this natural product class. Therefore, this discovery provides insight into enantioselective enzymatic formal Diels-Alder reactions.


Asunto(s)
Ibogaína/análogos & derivados , Ibogaína/metabolismo , Psicotrópicos/metabolismo , Tabernaemontana/metabolismo , Vías Biosintéticas , Humanos , Ibogaína/análisis , Trastornos Relacionados con Opioides/tratamiento farmacológico , Psicotrópicos/análisis , Estereoisomerismo , Tabernaemontana/química , Tabernaemontana/enzimología
13.
New Phytol ; 224(2): 848-859, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31436868

RESUMEN

Catharanthus roseus is a medicinal plant well known for producing bioactive compounds such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). Although the leaves of this plant are the main source of these antitumour drugs, much remains unknown on how TIAs are biosynthesised from a central precursor, strictosidine, to various TIAs in planta. Here, we have succeeded in showing, for the first time in leaf tissue of C. roseus, cell-specific TIAs localisation and accumulation with 10 µm spatial resolution Imaging mass spectrometry (Imaging MS) and live single-cell mass spectrometry (single-cell MS). These metabolomic studies revealed that most TIA precursors (iridoids) are localised in the epidermal cells, but major TIAs including serpentine and vindoline are localised instead in idioblast cells. Interestingly, the central TIA intermediate strictosidine also accumulates in both epidermal and idioblast cells of C. roseus. Moreover, we also found that vindoline accumulation increases in laticifer cells as the leaf expands. These discoveries highlight the complexity of intercellular localisation in plant specialised metabolism.


Asunto(s)
Catharanthus/citología , Catharanthus/metabolismo , Metabolómica , Hojas de la Planta/citología , Alcaloides de Triptamina Secologanina/metabolismo , Técnicas de Cultivo de Célula , Análisis de Componente Principal
14.
Chembiochem ; 19(9): 940-948, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29424954

RESUMEN

Plant monoterpene indole alkaloids, a large class of natural products, derive from the biosynthetic intermediate strictosidine aglycone. Strictosidine aglycone, which can exist as a variety of isomers, can be reduced to form numerous different structures. We have discovered a short-chain alcohol dehydrogenase (SDR) from plant producers of monoterpene indole alkaloids (Catharanthus roseus and Rauvolfia serpentina) that reduce strictosidine aglycone and produce an alkaloid that does not correspond to any previously reported compound. Here we report the structural characterization of this product, which we have named vitrosamine, as well as the crystal structure of the SDR. This discovery highlights the structural versatility of the strictosidine aglycone biosynthetic intermediate and expands the range of enzymatic reactions that SDRs can catalyse. This discovery further highlights how a sequence-based gene mining discovery approach in plants can reveal cryptic chemistry that would not be uncovered by classical natural product chemistry approaches.


Asunto(s)
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Deshidrogenasas-Reductasas de Cadena Corta/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Catharanthus/química , Catharanthus/enzimología , Cristalografía por Rayos X , Alcaloides Indólicos/química , Modelos Moleculares , Monoterpenos/química , Proteínas de Plantas/química , Conformación Proteica , Deshidrogenasas-Reductasas de Cadena Corta/química
15.
Nat Chem Biol ; 12(1): 6-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26551396

RESUMEN

The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homolog progesterone 5ß-reductase are highlighted.


Asunto(s)
Catharanthus/enzimología , Iridoides/metabolismo , Oxidorreductasas/química , Terpenos/metabolismo , Cristalografía por Rayos X , Ciclización , Modelos Moleculares , Oxidorreductasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Terpenos/química
16.
J Struct Biol ; 191(3): 290-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26208466

RESUMEN

Levansucrases are members of the glycoside hydrolase family and catalyse both the hydrolysis of the substrate sucrose and the transfer of fructosyl units to acceptor molecules. In the presence of sufficient sucrose, this may either lead to the production of fructooligosaccharides or fructose polymers. Aim of this study is to rationalise the differences in the polymerisation properties of bacterial levansucrases and in particular to identify structural features that determine different product spectrum in the levansucrase of the Gram-negative bacterium Erwinia amylovora (Ea Lsc, EC 2.4.1.10) as compared to Gram-positive bacteria such as Bacillus subtilis levansucrase. Ea is an enterobacterial pathogen responsible for the Fire Blight disease in rosaceous plants (e.g., apple and pear) with considerable interest for the agricultural industry. The crystal structure of Ea Lsc was solved at 2.77 Å resolution and compared to those of other fructosyltransferases from Gram-positive and Gram-negative bacteria. We propose the structural features, determining the different reaction products, to reside in just a few loops at the rim of the active site funnel. Moreover we propose that loop 8 may have a role in product length determination in Gluconacetobacter diazotrophicus LsdA and Microbacterium saccharophilum FFase. The Ea Lsc structure shows for the first time the products of sucrose hydrolysis still bound in the active site.


Asunto(s)
Erwinia amylovora/metabolismo , Hexosiltransferasas/química , Hexosiltransferasas/metabolismo , Sacarosa/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Dominio Catalítico , Gluconacetobacter/metabolismo , Hidrolasas/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Alineación de Secuencia
17.
Angew Chem Int Ed Engl ; 54(17): 5117-21, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25712404

RESUMEN

The ergot alkaloids, a class of fungal-derived natural products with important biological activities, are derived from a common intermediate, chanoclavine-I, which is elaborated into a set of diverse structures. Herein we report the discovery of the biosynthetic pathway of cycloclavine, a complex ergot alkaloid containing a cyclopropyl moiety. We used a yeast-based expression platform along with in vitro biochemical experiments to identify the enzyme that catalyzes a rearrangement of the chanoclavine-I intermediate to form a cyclopropyl moiety. The resulting compound, cycloclavine, was produced in yeast at titers of >500 mg L(-1) , thus demonstrating the feasibility of the heterologous expression of these complex alkaloids.


Asunto(s)
Enzimas/metabolismo , Alcaloides de Claviceps/biosíntesis , Proteínas Fúngicas/metabolismo , Alcaloides Indólicos/metabolismo , Aspergillus fumigatus/genética , Ciclopropanos/química , Enzimas/genética , Alcaloides de Claviceps/química , Proteínas Fúngicas/genética , Alcaloides Indólicos/química , Familia de Multigenes , Saccharomyces cerevisiae/metabolismo
18.
Materials (Basel) ; 17(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730750

RESUMEN

Graphene is undoubtedly the carbon allotrope that has attracted the attention of a myriad of researchers in the last decades more than any other. The interaction of external or intercalated Li and Li+ with graphene layers has been the subject of particular attention for its importance in the applications of graphene layers in Lithium Batteries (LiBs). It is well known that lithium atoms and Li+ can be found inside and/or outside the double layer of graphene, and the graphene layers are often twisted around its parallel plane to obtain twisted graphene with tuneable properties. Thus, in this research, the interactions between Li and Li+ with bilayer graphene and twisted bilayer graphene were investigated by a first-principles density functional theory method, considering the lithium atom and the cation at different symmetry positions and with two different adsorption configurations. Binding energies and equilibrium interlayer distances of filled graphene layers were obtained from the computed potential energy profiles. This work shows that the twisting can regulate the interaction of bilayer graphene with Li and Li+. The binding energies of Li+ systematically increase from bilayer graphene to twisted graphene regardless of twisted angles, while for lithium atoms, the binding energies decrease or remain substantially unchanged depending on the twist angles. This suggests a higher adsorption capacity of twisted graphene towards Li+, which is important for designing twisted graphene-based material for LiB anode coating. Furthermore, when the Li or Li+ is intercalated between two graphene layers, the equilibrium interlayer distances in the twisted layers increase compared to the unrotated bilayer, and the relaxation is more significant for Li+ with respect to Li. This suggests that the twisted graphene can better accommodate the cation in agreement with the above result. The outcomes of this research pave the way for the study of the selective properties of twisted graphene.

19.
Plant J ; 69(6): 1030-42, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22077743

RESUMEN

For almost a decade, our knowledge on the organisation of the family 1 UDP-glycosyltransferases (UGTs) has been limited to the model plant A. thaliana. The availability of other plant genomes represents an opportunity to obtain a broader view of the family in terms of evolution and organisation. Family 1 UGTs are known to glycosylate several classes of plant secondary metabolites. A phylogeny reconstruction study was performed to get an insight into the evolution of this multigene family during the adaptation of plants to life on land. The organisation of the UGTs in the different organisms was also investigated. More than 1500 putative UGTs were identified in 12 fully sequenced and assembled plant genomes based on the highly conserved PSPG motif. Analyses by maximum likelihood (ML) method were performed to reconstruct the phylogenetic relationships existing between the sequences. The results of this study clearly show that the UGT family expanded during the transition from algae to vascular plants and that in higher plants the clustering of UGTs into phylogenetic groups appears to be conserved, although gene loss and gene gain events seem to have occurred in certain lineages. Interestingly, two new phylogenetic groups, named O and P, that are not present in A. thaliana were discovered.


Asunto(s)
Adaptación Biológica , Embryophyta/enzimología , Genes de Plantas , Glucuronosiltransferasa/clasificación , Filogenia , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mapeo Cromosómico , Embryophyta/clasificación , Embryophyta/fisiología , Evolución Molecular , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia
20.
J Exp Bot ; 64(14): 4403-19, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24006417

RESUMEN

Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts.


Asunto(s)
Evolución Molecular , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Giberelinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Flores/enzimología , Flores/genética , Frutas/enzimología , Frutas/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Especificidad de Órganos/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato/genética , Vitis/enzimología , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA