Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(21): 14758-14771, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34669386

RESUMEN

Urban sanitation infrastructure is inadequate in many low-income countries, leading to the presence of highly concentrated, uncontained fecal waste streams in densely populated areas. Combined with mechanisms of aerosolization, airborne transport of enteric microbes and their genetic material is possible in such settings but remains poorly characterized. We detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted (receiving sewage or wastewater) surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA, via multiplex reverse-transcription qPCR (37 targets) and ddPCR (13 targets). We detected a wide range of enteric targets, some not previously reported in extramural urban aerosols, with more frequent detections of all enteric targets at higher densities in La Paz and Kanpur near OWCs. We report density estimates ranging up to 4.7 × 102 gc per mair3 across all targets including heat-stable enterotoxigenic Escherichia coli, Campylobacter jejuni, enteroinvasive E. coli/Shigella spp., Salmonella spp., norovirus, and Cryptosporidium spp. Estimated 25, 76, and 0% of samples containing positive pathogen detects were accompanied by culturable E. coli in La Paz, Kanpur, and Atlanta, respectively, suggesting potential for viability of enteric microbes at the point of sampling. Airborne transmission of enteric pathogens merits further investigation in cities with poor sanitation.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Aerosoles , Ciudades , Escherichia coli , Heces , Humanos , Saneamiento , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA