Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
MMWR Morb Mortal Wkly Rep ; 66(34): 904-908, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859050

RESUMEN

Ohio is experiencing unprecedented loss of life caused by unintentional drug overdoses (1), with illicitly manufactured fentanyl (IMF) emerging as a significant threat to public health (2,3). IMF is structurally similar to pharmaceutical fentanyl, but is produced in clandestine laboratories and includes fentanyl analogs that display wide variability in potency (2); variations in chemical composition of these drugs make detection more difficult. During 2010-2015, unintentional drug overdose deaths in Ohio increased 98%, from 1,544 to 3,050.* In Montgomery County (county seat: Dayton), one of the epicenters of the opioid epidemic in the state, unintentional drug overdose deaths increased 40% in 1 year, from 249 in 2015 to 349 in 2016 (estimated unadjusted mortality rate = 57.7 per 100,000) (4). IMFs have not been part of routine toxicology testing at the coroner's offices and other types of medical and criminal justice settings across the country (2,3). Thus, data on IMF test results in the current outbreak have been limited. The Wright State University and the Montgomery County Coroner's Office/Miami Valley Regional Crime Laboratory (MCCO/MVRCL) collaborated on a National Institutes of Health study of fentanyl analogs and metabolites and other drugs identified in 281 unintentional overdose fatalities in 24 Ohio counties during January-February 2017. Approximately 90% of all decedents tested positive for fentanyl, 48% for acryl fentanyl, 31% for furanyl fentanyl, and 8% for carfentanil. Pharmaceutical opioids were identified in 23% of cases, and heroin in 6%, with higher proportions of heroin-related deaths in Appalachian counties. The majority of decedents tested positive for more than one type of fentanyl. Evidence suggests the growing role of IMFs, and the declining presence of heroin and pharmaceutical opioids in unintentional overdose fatalities, compared with 2014-2016 data from Ohio and other states (3-5). There is a need to include testing for IMFs as part of standard toxicology panels for biological specimens used in the medical, substance abuse treatment, and criminal justice settings.


Asunto(s)
Sobredosis de Droga/mortalidad , Fentanilo/análogos & derivados , Fentanilo/envenenamiento , Drogas Ilícitas/envenenamiento , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ohio/epidemiología , Adulto Joven
2.
Int J Drug Policy ; 71: 3-9, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31146200

RESUMEN

BACKGROUND: Conducted in Dayton, Ohio, the study aims to characterize user knowledge and experiences with non-pharmaceutical fentanyl-type drugs (NPFs) and compare self-reports with urine toxicology for NPFs and heroin. METHODS: Between May 2017-January 2018, 60 individuals who self-reported heroin/NPF use were interviewed using structured questionnaire on socio-demographics, NPF and other drug use practices. Unobserved urine samples were collected and analyzed using: 1) liquid-chromatography-tandem mass spectrometry (LC-MS/MS)-based method (Toxicology lab) to identify 34 fentanyl analogues, metabolites, and other synthetic opioids; 2) immunoassay-based method to screen for opiates (heroin). Sensitivity, specificity and Cohen's kappa were calculated to assess agreement between self-reports and urine toxicology. RESULTS: The sample was 52% female, and over 90% white. Almost 60% reported preference for heroin, and 40% for NPF. Participants endorsed a number of ways of distinguishing heroin from NPF, including appearance (88.3%), effects (76.7%), taste (55%), and information provided by dealers (53.3%). Almost 80% felt confident they could distinguish heroin from NPF, but knowledge about fentanyl analogues was limited. LC-MS/MS testing identified 8 types of NPFs. Over 88% tested positive for NPFs, including 86% fentanyl, 48% carfentanil, 42% acetyl fentanyl. About 47% screened positive for opiates/heroin, and all of them were also positive for NPFs. When comparing self-reported use of NPF to urine toxicology, sensitivity and specificity were relatively high (84% and 83.3%, accordingly), while Cohen's Kappa was 0.445, indicating fair agreement. Sensitivity and specificity were lower for heroin (77.8% and 50.0%, accordingly), and Cohen's Kappa was 0.296, indicating low agreement between self-reports of heroin use and urine toxicology. DISCUSSION: Nearly 90% of the study participants tested positive for NPF-type drugs. Participants were more likely to over-report heroin use and underreport NPF use. The majority had little knowledge about fentanyl analogues. Study findings will inform development of novel harm reduction approaches to reduce overdose mortality.


Asunto(s)
Fentanilo/administración & dosificación , Dependencia de Heroína/epidemiología , Trastornos Relacionados con Opioides/epidemiología , Detección de Abuso de Sustancias , Adulto , Cromatografía Liquida , Femenino , Fentanilo/análogos & derivados , Fentanilo/orina , Conocimientos, Actitudes y Práctica en Salud , Dependencia de Heroína/diagnóstico , Humanos , Drogas Ilícitas/orina , Masculino , Persona de Mediana Edad , Ohio , Trastornos Relacionados con Opioides/diagnóstico , Autoinforme , Sensibilidad y Especificidad , Encuestas y Cuestionarios , Espectrometría de Masas en Tándem
3.
Appl Opt ; 41(36): 7671-8, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12510937

RESUMEN

We have developed a threedimensional imaging laser radar featuring 3-cm range resolution and single-photon sensitivity. This prototype direct-detection laser radar employs compact, all-solid-state technology for the laser and detector array. The source is a Nd:YAG microchip laser that is diode pumped, passively Q-switched, and frequency doubled. The detector is a gated, passively quenched, two-dimensional array of silicon avalanche photodiodes operating in Geigermode. After describing the system in detail, we present a three-dimensional image, derive performance characteristics, and discuss our plans for future imaging three-dimensional laser radars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA