Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064694

RESUMEN

Sleep disturbances are common in Alzheimer's disease and other neurodegenerative disorders, and together represent a potential therapeutic target for disease modification. A major barrier for studying sleep in patients with dementia is the requirement for overnight polysomnography (PSG) to achieve formal sleep staging. This is not only costly, but also spending a night in a hospital setting is not always advisable in this patient group. As an alternative to PSG, portable electroencephalography (EEG) headbands (HB) have been developed, which reduce cost, increase patient comfort, and allow sleep recordings in a person's home environment. However, naïve applications of current automated sleep staging systems tend to perform inadequately with HB data, due to their relatively lower quality. Here we present a deep learning (DL) model for automated sleep staging of HB EEG data to overcome these critical limitations. The solution includes a simple band-pass filtering, a data augmentation step, and a model using convolutional (CNN) and long short-term memory (LSTM) layers. With this model, we have achieved 74% (±10%) validation accuracy on low-quality two-channel EEG headband data and 77% (±10%) on gold-standard PSG. Our results suggest that DL approaches achieve robust sleep staging of both portable and in-hospital EEG recordings, and may allow for more widespread use of ambulatory sleep assessments across clinical conditions, including neurodegenerative disorders.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Humanos , Polisomnografía , Sueño , Fases del Sueño
2.
Alzheimers Dement (N Y) ; 8(1): e12347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992215

RESUMEN

Introduction: Sleep disturbances are common in Alzheimer's disease (AD), with estimates of prevalence as high as 65%. Recent work suggests that specific sleep stages, such as slow-wave sleep (SWS) and rapid eye movement (REM), may directly impact AD pathophysiology. A major limitation to sleep staging is the requirement for clinical polysomnography (PSG), which is often not well tolerated in patients with dementia. We have recently developed a deep learning model to reliably analyze lower quality electroencephalogram (EEG) data obtained from a simple, two-lead EEG headband. Here we assessed whether this methodology would allow for home EEG sleep staging in patients with mild-moderate AD. Methods: A total of 26 mild-moderate AD patients and 24 age-matched, healthy control participants underwent home EEG sleep recordings as well as actigraphy and subjective sleep measures through the Pittsburgh Sleep Quality Index (PSQI). Each participant wore the EEG headband for up to three nights. Sleep was staged using a deep learning model previously developed by our group, and sleep stages were correlated with actigraphy measures as well as PSQI scores. Results: We show that home EEG with a headband is feasible and well tolerated in patients with AD. Patients with mild-moderate AD were found to spend less time in SWS compared to healthy control participants. Other sleep stages were not different between the two groups. Actigraphy or the PSQI were not found to predict home EEG sleep stages. Discussion: Our data show that home EEG is well tolerated, and can ascertain reduced SWS in patients with mild-moderate AD. Similar findings have previously been reported, but using clinical PSG not suitable for the home environment. Home EEG will be particularly useful in future clinical trials assessing potential interventions that may target specific sleep stages to alter the pathogenesis of AD. Highlights: Home electroencephalogram (EEG) sleep assessments are important for measuring sleep in patients with dementia because polysomnography is a limited resource not well tolerated in this patient population.Simplified at-home EEG for sleep assessment is feasible in patients with mild-moderate Alzheimer's disease (AD).Patients with mild-moderate AD exhibit less time spent in slow-wave sleep in the home environment, compared to healthy control participants.Compared to healthy control participants, patients with mild-moderate AD spend more time in bed, with decreased sleep efficiency, and more awakenings as measured by actigraphy, but these measures do not correlate with EEG sleep stages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA