RESUMEN
Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.
Asunto(s)
Bases de Datos Factuales , Enfermedad , Genes , Fenotipo , Humanos , Internet , Bases de Datos Factuales/normas , Programas Informáticos , Genes/genética , Enfermedad/genéticaRESUMEN
Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.
Asunto(s)
Ontologías Biológicas , Disciplinas de las Ciencias Biológicas , Estudio de Asociación del Genoma Completo , FenotipoRESUMEN
Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been collected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpreting these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically limited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phenomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a system for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) mapping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of genotype-phenotype associations from different organisms and cross-species informed variant prioritization.
RESUMEN
The Human Reference Atlas (HRA) is defined as a comprehensive, three-dimensional (3D) atlas of all the cells in the healthy human body. It is compiled by an international team of experts who develop standard terminologies that they link to 3D reference objects, describing anatomical structures. The third HRA release (v1.2) covers spatial reference data and ontology annotations for 26 organs. Experts access the HRA annotations via spreadsheets and view reference object models in 3D editing tools. This paper introduces the Common Coordinate Framework (CCF) Ontology v2.0.1 that interlinks specimen, biological structure, and spatial data, together with the CCF API that makes the HRA programmatically accessible and interoperable with Linked Open Data (LOD). We detail how real-world user needs and experimental data guide CCF Ontology design and implementation, present CCF Ontology classes and properties together with exemplary usage, and report on validation methods. The CCF Ontology graph database and API are used in the HuBMAP portal, HRA Organ Gallery, and other applications that support data queries across multiple, heterogeneous sources.
Asunto(s)
Células , Bases de Datos Factuales , HumanosRESUMEN
Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focused measurable trait data. Moreover, variations in gene expression in response to environmental disturbances even without any genetic alterations can also be associated with particular biological attributes. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.
RESUMEN
Similar to managing software packages, managing the ontology life cycle involves multiple complex workflows such as preparing releases, continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-line utilities to powerful ontology-engineering environmentsr. Particularly in the biomedical domain, which has developed a set of highly diverse yet inter-dependent ontologies, standardizing release practices and metadata and establishing shared quality standards are crucial to enable interoperability. The Ontology Development Kit (ODK) provides a set of standardized, customizable and automatically executable workflows, and packages all required tooling in a single Docker image. In this paper, we provide an overview of how the ODK works, show how it is used in practice and describe how we envision it driving standardization efforts in our community. Database URL: https://github.com/INCATools/ontology-development-kit.