Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
BMC Plant Biol ; 24(1): 88, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317087

RESUMEN

Mounting evidence recognizes structural variations (SVs) and repetitive DNA sequences as crucial players in shaping the existing grape phenotypic diversity at intra- and inter-species levels. To deepen our understanding on the abundance, diversity, and distribution of SVs and repetitive DNAs, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), we re-sequenced the genomes of the ancient grapes Aglianico and Falanghina. The analysis of large copy number variants (CNVs) detected candidate polymorphic genes that are involved in the enological features of these varieties. In a comparative analysis of Aglianico and Falanghina sequences with 21 publicly available genomes of cultivated grapes, we provided a genome-wide annotation of grape TEs at the lineage level. We disclosed that at least two main clusters of grape cultivars could be identified based on the TEs content. Multiple TEs families appeared either significantly enriched or depleted. In addition, in silico and cytological analyses provided evidence for a diverse chromosomal distribution of several satellite repeats between Aglianico, Falanghina, and other grapes. Overall, our data further improved our understanding of the intricate grape diversity held by two Italian traditional varieties, unveiling a pool of unique candidate genes never so far exploited in breeding for improved fruit quality.


Asunto(s)
Vitis , Humanos , Vitis/genética , Fitomejoramiento , Elementos Transponibles de ADN/genética , ADN Satélite
2.
BMC Plant Biol ; 23(1): 241, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149574

RESUMEN

BACKGROUND: The biochemical makeup of grape berries at harvest is essential for wine quality and depends on a fine transcriptional regulation occurring during berry development. In this study, we conducted a comprehensive survey of transcriptomic and metabolomic changes occurring in different berry tissues and developmental stages of the ancient grapes Aglianico and Falanghina to establish the patterns of the secondary metabolites contributing to their wine aroma and investigate the underlying transcriptional regulation. RESULTS: Over two hundred genes related to aroma were found, of which 107 were differentially expressed in Aglianico and 99 in Falanghina. Similarly, 68 volatiles and 34 precursors were profiled in the same samples. Our results showed a large extent of transcriptomic and metabolomic changes at the level of isoprenoids (terpenes, norisoprenoids), green leaf volatiles (GLVs), and amino acid pathways, although the terpenoid metabolism was the most distinctive for Aglianico, and GLVs for Falanghina. Co-expression analysis that integrated metabolome and transcriptome data pinpointed 25 hub genes as points of biological interest in defining the metabolic patterns observed. Among them, three hub genes encoding for terpenes synthases (VvTPS26, VvTPS54, VvTPS68) in Aglianico and one for a GDP-L-galactose phosphorylase (VvGFP) in Falanghina were selected as potential active player underlying the aroma typicity of the two grapes. CONCLUSION: Our data improve the understanding of the regulation of aroma-related biosynthetic pathways of Aglianico and Falanghina and provide valuable metabolomic and transcriptomic resources for future studies in these varieties.


Asunto(s)
Transcriptoma , Vitis , Vitis/metabolismo , Frutas , Odorantes , Metaboloma , Terpenos/metabolismo
3.
Planta ; 258(3): 50, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488440

RESUMEN

MAIN CONCLUSION: DcMYB11, an R2R3 MYB gene associated with petiole anthocyanin pigmentation in carrot, was functionally characterized. A putative enhancer sequence is able to increase DcMYB11 activity. The accumulation of anthocyanin pigments can exhibit different patterns across plant tissues and crop varieties. This variability allowed the investigation of the molecular mechanisms behind the biosynthesis of these pigments in several plant species. Among crops, carrots have a well-defined anthocyanin pigmentation pattern depending on the genic background. In this work, we report on the discovery of DNA structural differences affecting the activity of an R2R3 MYB (encoded by DcMYB11) involved in anthocyanin regulation in carrot petiole. To this end, we first verified the function of DcMYB11 using heterologous systems and identified three different alleles which may explain differences in petiole pigmentation. Characterization of the DcMYB11 alleles at the 5' upstream sequence unveiled a sequence that functions as a putative enhancer. In conclusion, this study provides novel insight into the molecular mechanisms controlling anthocyanin accumulation in carrot. By these outcomes, we expanded our knowledge on the cis-regulatory sequences in plants.


Asunto(s)
Daucus carota , Antocianinas , Pigmentación , Alelos , Productos Agrícolas
4.
Molecules ; 25(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935970

RESUMEN

Plants produce a vast array of biomolecules with beneficial effects for human health. In this study, polyphenol and anthocyanin-rich extracts (PAE) from pigmented tubers of Solanum tuberosum L. varieties "Blue Star", "Magenta Love", and "Double Fun" in comparison with the more extensively studied "Vitelotte" were evaluated and compared for antiproliferative effects in human leukemia cells, and their phytochemical and genetic profiles were determined. In U937 cells, upon treatment with PAE, it was possible to reveal the expression of specific apoptotic players, such as caspase 8, 9, 3, and poly (ADP-ribose) polymerase (PARP), as well as the induction of monocyte and granulocyte differentiation. A liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) investigation revealed the presence of polyphenolic compounds in all the varieties of potatoes analyzed, among which caffeoyl and feruloyl quinic acid derivatives were the most abundant, as well as several acylated anthocyanins. Each pigmented variety was genotyped by DNA-based molecular markers, and flavonoid-related transcription factors were profiled in tubers in order to better characterize these outstanding resources and contribute to their exploitation in breeding. Interesting biological activities were observed for "Blue Star" and "Vitelotte" varieties with respect to the minor or no effect of the "Double Fun" variety.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tubérculos de la Planta/química , Polifenoles/química , Solanum tuberosum/química , Solanum tuberosum/genética , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Perfil Genético , Genotipo , Humanos , Fitoquímicos/química , Extractos Vegetales/química , Espectrometría de Masa por Ionización de Electrospray
5.
Planta ; 250(5): 1781-1787, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31562541

RESUMEN

MAIN CONCLUSION: Copia/Ale is the youngest lineage in both Solanum tuberosum and S. commersonii. Within it, we identified nightshade, a new LTR element active in the cultivated potato. From an evolutionary perspective, long-terminal repeat retrotransposons (LTR-RT) activity during stress may be viewed as a mean by which organisms can keep up rates of genetic adaptation to changing conditions. Potato is one of the most important crop consumed worldwide, but studies on LTR-RT characterization are still lacking. Here, we assessed the abundance, insertion time and activity of LTR-RTs in both cultivated Solanum tuberosum and its cold-tolerant wild relative S. commersonii genomes. Gypsy elements were more abundant than Copia ones, suggesting that the former was somehow more successful in colonizing potato genomes. However, Copia elements, and in particular, the Ale lineage, are younger than Gypsy ones, since their insertion time was in average ~ 2 Mya. Due to the ability of LTR-RTs to be circularized by the host DNA repair mechanisms, we identified via mobilome-seq a Copia/Ale element (called nightshade, informal name used for potato family) active in S. tuberosum genome. Our analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in potato.


Asunto(s)
Genoma de Planta/genética , Genómica , Retroelementos/ética , Solanum/genética , Secuencias Repetidas Terminales/genética , Frío , Evolución Molecular , Marcadores Genéticos/genética , Solanum/fisiología , Solanum tuberosum/genética , Solanum tuberosum/fisiología , Estrés Fisiológico
6.
Planta ; 251(1): 32, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823009

RESUMEN

MAIN CONCLUSION: Genomic and transcriptomic studies in plants and, more in deep, in grapevine reveal that the disease-resistance RNL gene family is highly variable. RNLs (RPW8-NLRs) are a phylogenetically distinct class of nucleotide oligomerization domain (NOD)-like receptors (NLRs) identified in plants. Two RNLs, namely, the NRG1 (N Requirement Gene 1) and the ADR1 (Activated Disease Resistance 1), have been characterized; however, little is known about the RNL evolutionary history in higher plants. To trace the diversification of RNL gene subfamily, we scanned the NLR proteins of 73 plant genomes belonging to 29 taxa, revealing a noticeable diversification across species and within the same genus or botanic family together with a conspicuous expansion in important crop species. To explore the RNL variability in Vitis vinifera and gain information with respect to their structure, evolutionary diversification of five grape genomes ('Aglianico', 'Falanghina', 'Sultanina', 'Tannat', and 'Nebbiolo') has been compared to the reference genome ('Pinot Noir'). The number of RNLs ranged from 6 ('Sultanina') to 14 ('Nebbiolo'), in contrast to the 10 'Pinot Noir' RNLs. The phylogenetic study on grapevine RNLs revealed that all collapsed into NRG1-clade, rather than four. To investigate more in depth the means of intraspecific variability of grape RNL copies, a transcriptomic profiling in response to powdery mildew (PM) infection was carried out through qRT-PCRs and public databases interrogation. The RNL expression variability identified in transcriptome data sets supports the hypothesis of a functional expansion/contraction in grapevine varieties. Although no direct correlations between grapevine PM-resistance and RNL expression was identified, our work can provide good candidates for functional studies able to elucidate the putative "helper" role of RNLs in grape immune signalling.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Semillas/genética , Semillas/metabolismo , Vitis/genética , Vitis/metabolismo , Ascomicetos , Evolución Molecular , Perfilación de la Expresión Génica , Genoma de Planta , Neurregulina-1 , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma
8.
Planta ; 248(3): 729-743, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948127

RESUMEN

MAIN CONCLUSION: We provide advances in DCL and RDR gene diversity in Solanaceae. We also shed light on DCL and RDR gene expression in response to cold stress. DICER-like (DCL) and RNA-dependent RNA polymerase (RDR) genes form the core components to trigger small non-coding RNA (ncRNA) production. In spite of this, little is known about the two gene families in non-model plant species. As their genome sequences are now available, the cultivated potato (Solanum tuberosum) and its cold-tolerant wild relative Solanum commersonii offer a valuable opportunity to advance our understanding of the above genes. To determine the extent of diversification and evolution of DCLs and RDRs in these species, we performed a comparative analysis. Seven DCLs were identified in the two species, whereas seven and six RDR genes were found in S. tuberosum and S. commersonii, respectively. Based on phylogenetic analysis with DCLs and RDRs from several species, we provide evidence for an increase in their number in both potato species. We also disclosed that tandem duplications played a major role in the evolution of these gene families in Solanaceae. DCL and RDR expression was investigated in different tissues and under cold and virus stresses, with divergent profiles of the tandem duplicated genes being found in different tissues. DCL paralogs showed a contrasting expression in S. tuberosum and S. commersonii following cold stress and virus infection. By contrast, no change in RDR transcript activity was detected following both stresses. Overall, this study provides the first comparative genomic analysis of the core components of the RNAi machinery in Solanaceae and offers a scaffold for future functional analysis of these gene families.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Genes de Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasa III/genética , Solanum tuberosum/genética , Solanum/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Solanum/enzimología , Solanum tuberosum/enzimología , Estrés Fisiológico/genética
9.
Plant Cell Environ ; 41(5): 1038-1051, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28386931

RESUMEN

Wild potato species are useful sources of allelic diversity and loci lacking in the cultivated potato. In these species, the presence of anthocyanins in leaves has been associated with a greater tolerance to cold stress. However, the molecular mechanisms that allow potatoes to withstand cold exposure remain unclear. Here, we show that the expression of AN2, a MYB transcription factor, is induced by low temperatures in wild, cold-tolerant Solanum commersonii, and not in susceptible Solanum tuberosum varieties. We found that AN2 is a paralog of the potato anthocyanin regulator AN1, showing similar interaction ability with basic helix-loop-helix (bHLH) co-partners. Their sequence diversity resulted in a different capacity to promote accumulation of phenolics when tested in tobacco. Indeed, functional studies demonstrated that AN2 is less able to induce anthocyanins than AN1, but nevertheless it has a strong ability to induce accumulation of hydroxycinnamic acid derivatives. We propose that the duplication of R2R3 MYB genes resulted in subsequent subfunctionalization, where AN1 specialized in anthocyanin production and AN2 conserved the ability to respond to cold stress, inducing mainly the synthesis of hydroxycinnamic acid derivatives. These results contribute to understanding the evolutionary significance of gene duplication on phenolic compound regulation.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Solanum/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Frío , Ácidos Cumáricos/metabolismo , Genes Duplicados , Presión Osmótica , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Solanum/fisiología , Estrés Fisiológico , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Cell ; 27(4): 954-68, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25873387

RESUMEN

Here, we report the draft genome sequence of Solanum commersonii, which consists of ∼830 megabases with an N50 of 44,303 bp anchored to 12 chromosomes, using the potato (Solanum tuberosum) genome sequence as a reference. Compared with potato, S. commersonii shows a striking reduction in heterozygosity (1.5% versus 53 to 59%), and differences in genome sizes were mainly due to variations in intergenic sequence length. Gene annotation by ab initio prediction supported by RNA-seq data produced a catalog of 1703 predicted microRNAs, 18,882 long noncoding RNAs of which 20% are shown to target cold-responsive genes, and 39,290 protein-coding genes with a significant repertoire of nonredundant nucleotide binding site-encoding genes and 126 cold-related genes that are lacking in S. tuberosum. Phylogenetic analyses indicate that domesticated potato and S. commersonii lineages diverged ∼2.3 million years ago. Three duplication periods corresponding to genome enrichment for particular gene families related to response to salt stress, water transport, growth, and defense response were discovered. The draft genome sequence of S. commersonii substantially increases our understanding of the domesticated germplasm, facilitating translation of acquired knowledge into advances in crop stability in light of global climate and environmental changes.


Asunto(s)
Genoma de Planta/genética , Solanum tuberosum/genética , Solanum/genética , Aclimatación , Evolución Biológica , Filogenia , Solanum/clasificación , Solanum tuberosum/clasificación
11.
New Phytol ; 210(4): 1382-94, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26915816

RESUMEN

Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Solanum/genética , Transcriptoma , Cromosomas de las Plantas/genética , Diploidia , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genotipo , Hibridación Genética , Metabolómica , Modelos Biológicos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Poliploidía , Solanum/metabolismo , Especificidad de la Especie
12.
J Hered ; 107(2): 187-92, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26663623

RESUMEN

In plants, the most widely used cytological techniques to assess parental genome contributions are based on in situ hybridization (FISH and GISH), but they are time-consuming and need specific expertise and equipment. Recent advances in genomics and molecular biology have made PCR-based markers a straightforward, affordable technique for chromosome typing. Here, we describe the development of a molecular assay that uses single-copy conserved ortholog set II (COSII)-based single nucleotide polymorphisms (SNPs) and the high-resolution melting (HRM) technique to assess the chromosome dosage of interspecific hybrids between a Solanum phureja-S. tuberosum diploid (2n = 2x = 24) hybrid and its wild relative S. commersonii. Screening and analysis of 45 COSII marker sequences allowed S. commersonii-specific SNPs to be identified for all 12 chromosomes. Combining the HRM technique with the establishment of synthetic DNA hybrids, SNP markers were successfully used to predict the expected parental chromosome ratio of 5 interspecific triploid hybrids. These results demonstrate the ability of this strategy to distinguish diverged genomes from each other, and to estimate chromosome dosage. The method could potentially be applied to any species as a tool to assess paternal to maternal ratios in the framework of a breeding program or following transformation techniques.


Asunto(s)
Dosificación de Gen , Genoma de Planta , Ploidias , Solanum tuberosum/genética , Cruzamiento , Cromosomas de las Plantas , ADN de Plantas/genética , Marcadores Genéticos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
13.
Plant J ; 80(3): 527-40, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25159050

RESUMEN

AN1 is a regulatory gene that promotes anthocyanin biosynthesis in potato tubers and encodes a R2R3 MYB transcription factor. However, no clear evidence implicates AN1 in anthocyanin production in leaves, where these pigments might enhance environmental stress tolerance. In our study we found that AN1 displays intraspecific sequence variability in both coding/non-coding regions and in the promoter, and that its expression is associated with high anthocyanin content in leaves of commercial potatoes. Expression analysis provided evidence that leaf pigmentation is associated to AN1 expression and that StJAF13 acts as putative AN1 co-regulator for anthocyanin gene expression in leaves of the red leaf variety 'Magenta Love,' while a concomitant expression of StbHLH1 may contribute to anthocyanin accumulation in leaves of 'Double Fun.' Yeast two-hybrid experiments confirmed that AN1 interacts with StbHLH1 and StJAF13 and the latter interaction was verified and localized in the cell nucleus by bimolecular fluorescence complementation assays. In addition, transgenic tobacco (Nicotiana tabacum) overexpressing a combination of either AN1 with StJAF13 or AN1 with StbHLH1 showed deeper purple pigmentation with respect to AN1 alone. This further confirmed AN1/StJAF13 and AN1/StbHLH1 interactions. Our findings demonstrate that the classical loci identified for potato leaf anthocyanin accumulation correspond to AN1 and may represent an important step to expand our knowledge on the molecular mechanisms underlying anthocyanin biosynthesis in different plant tissues.


Asunto(s)
Antocianinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Solanum tuberosum/genética , Secuencia de Aminoácidos , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/genética , Datos de Secuencia Molecular , Filogenia , Pigmentación/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Plantones/genética , Plantones/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
14.
Phytopathology ; 105(8): 1131-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25775104

RESUMEN

Plants have evolved strategies and mechanisms to detect and respond to pathogen attack. Different organs of the same plant may be subjected to different environments (e.g., aboveground versus belowground) and pathogens with different lifestyles. Accordingly, plants commonly need to tailor defense strategies in an organ-specific manner. Phytophthora infestans, causal agent of potato late blight disease, infects both aboveground foliage and belowground tubers. We examined the efficacy of transgene RB (known for conferring foliar late blight resistance) in defending against tuber late blight disease. Our results indicate that the presence of the transgene has a positive yet only marginally significant effect on tuber disease resistance on average. However, a significant association between transgene transcript levels and tuber resistance was established for specific transformed lines in an age-dependent manner, with higher transcript levels indicating enhanced tuber resistance. Thus, RB has potential to function in both foliage and tuber to impart late blight resistance. Our data suggest that organ-specific resistance might result directly from transcriptional regulation of the resistance gene itself.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/inmunología , Solanum tuberosum/genética , Resistencia a la Enfermedad , Especificidad de Órganos , Fenotipo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/inmunología , Tubérculos de la Planta/microbiología , Plantas Modificadas Genéticamente , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Factores de Tiempo , Transgenes
15.
BMC Genet ; 15: 123, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25403706

RESUMEN

BACKGROUND: Wild potato Solanum bulbocastanum is a rich source of genetic resistance against a variety of pathogens. It belongs to a taxonomic group of wild potato species sexually isolated from cultivated potato. Consistent with genetic isolation, previous studies suggested that the genome of S. bulbocastanum (B genome) is structurally distinct from that of cultivated potato (A genome). However, the genome architecture of the species remains largely uncharacterized. The current study employed Diversity Arrays Technology (DArT) to generate a linkage map for S. bulbocastanum and compare its genome architecture with those of potato and tomato. RESULTS: Two S. bulbocastanum parental linkage maps comprising 458 and 138 DArT markers were constructed. The integrated map comprises 401 non-redundant markers distributed across 12 linkage groups for a total length of 645 cM. Sequencing and alignment of DArT clones to reference physical maps from tomato and cultivated potato allowed direct comparison of marker orders between species. A total of nine genomic segments informative in comparative genomic studies were identified. Seven genome rearrangements correspond to previously-reported structural changes that have occurred since the speciation of tomato and potato. We also identified two S. bulbocastanum genomic regions that differ from cultivated potato, suggesting possible chromosome divergence between Solanum A and B genomes. CONCLUSIONS: The linkage map developed here is the first medium density map of S. bulbocastanum and will assist mapping of agronomical genes and QTLs. The structural comparison with potato and tomato physical maps is the first genome wide comparison between Solanum A and B genomes and establishes a foundation for further investigation of B genome-specific structural chromosome rearrangements.


Asunto(s)
Cromosomas de las Plantas/genética , Solanum/genética , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
16.
J Exp Bot ; 64(2): 625-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23307917

RESUMEN

Polyploidy is very common within angiosperms, and several studies are in progress to ascertain the effects of early polyploidization at the molecular, physiological, and phenotypic level. Extensive studies are available only in synthetic allopolyploids. By contrast, less is known about the consequences of autopolyploidization. The current study aimed to assess the occurrence and extent of genetic, epigenetic, and anatomical changes occurring after oryzaline-induced polyploidization of Solanum commersonii Dunal and Solanum bulbocastanum Dunal, two diploid (2n=2×=24) potato species widely used in breeding programmes. Microsatellite analysis showed no polymorphisms between synthetic tetraploids and diploid progenitors. By contrast, analysis of DNA methylation levels indicated that subtle alterations at CG and CHG sites were present in tetraploids of both species. However, no change occurred concurrently in all tetraploids analysed with respect to their diploid parent, revealing a stochastic trend in the changes observed. The morpho-anatomical consequences of polyploidization were studied in leaf main veins and stomata. With only a few exceptions, analyses showed no clear superiority of tetraploids in terms of leaf thickness and area, vessel number, lumen size and vessel wall thickness, stomata pore length and width, guard cell width, and stomatal density compared with their diploid progenitors. These results are consistent with the hypothesis that there are no traits systematically associated with autopolyploidy.


Asunto(s)
Hibridación Genética , Poliploidía , Solanum/genética , Cruzamientos Genéticos , Metilación de ADN , Diploidia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Solanum/crecimiento & desarrollo , Solanum/metabolismo
17.
Cells ; 12(2)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672146

RESUMEN

Grapevine (Vitis vinifera L.) seeds are rich in polyphenols including proanthocyanidins, molecules with a variety of biological effects including anticancer action. We have previously reported that the grape seed semi-polar extract of Aglianico cultivar (AGS) was able to induce apoptosis and decrease cancer properties in different mesothelioma cell lines. Concomitantly, this extract resulted in enriched oligomeric proanthocyanidins which might be involved in determining the anticancer activity. Through transcriptomic and metabolomic analyses, we investigated in detail the anticancer pathway induced by AGS. Transcriptomics analysis and functional annotation allowed the identification of the relevant causative genes involved in the apoptotic induction following AGS treatment. Subsequent biological validation strengthened the hypothesis that MDM2 could be the molecular target of AGS and that it could act in both a p53-dependent and independent manner. Finally, AGS significantly inhibited tumor progression in a xenograft mouse model of mesothelioma, confirming also in vivo that MDM2 could act as molecular player responsible for the AGS antitumor effect. Our findings indicated that AGS, exerting a pro-apoptotic effect by hindering MDM2 pathway, could represent a novel source of anticancer molecules.


Asunto(s)
Extracto de Semillas de Uva , Mesotelioma , Proantocianidinas , Vitis , Humanos , Animales , Ratones , Extracto de Semillas de Uva/farmacología , Proantocianidinas/farmacología , Semillas , Redes y Vías Metabólicas , Proteínas Proto-Oncogénicas c-mdm2
18.
Front Plant Sci ; 14: 1201287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771498

RESUMEN

Sexual reproduction has contributed to a significant degree of variability in cultivated grapevine populations. However, the additional influence of spontaneous somatic mutations has played a pivotal role in shaping the diverse landscape of grapevine agrobiodiversity. These naturally occurring selections, termed 'clones,' represent a vast reservoir of potentially valuable traits and alleles that hold promise for enhancing grape quality and bolstering plant resilience against environmental and biotic challenges. Despite their potential, many of these clones remain largely untapped.In light of this context, this study aims to delve into the population structure, genetic diversity, and distinctive genetic loci within a collection of 138 clones derived from six Campanian and Apulian grapevine varieties, known for their desirable attributes in viticulture and winemaking. Employing two reduced representation sequencing methods, we extracted Single-Nucleotide Polymorphism (SNP) markers. Population structure analysis and fixation index (FST) calculations were conducted both between populations and at individual loci. Notably, varieties originating from the same geographical region exhibited pronounced genetic similarity.The resulting SNP dataset facilitated the identification of approximately two hundred loci featuring divergent markers (FST ≥ 0.80) within annotated exons. Several of these loci exhibited associations with essential traits like phenotypic adaptability and environmental responsiveness, offering compelling opportunities for grapevine breeding initiatives. By shedding light on the genetic variability inherent in these treasured traditional grapevines, our study contributes to the broader understanding of their potential. Importantly, it underscores the urgency of preserving and characterizing these valuable genetic resources to safeguard their intra-varietal diversity and foster future advancements in grapevine cultivation.

19.
Int J Mol Sci ; 13(8): 10316-10335, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22949863

RESUMEN

Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.


Asunto(s)
Genoma de Planta , Genómica/métodos , Plantas/genética , Poliploidía , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo
20.
Plant Direct ; 6(8): e433, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949953

RESUMEN

To increase the production of decorated anthocyanins in potato cell cultures, we knocked out a novel potato gene, named Inducer Silencing of Anthocyanins in Cell culture (StISAC), using CRISPR-Cas9 editing. Our results provided evidence that mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. Moreover, the production of these important pigments was stabilized over time. Our study overcame important challenges in the efficient biotechnological production of these valuable pigments and reported the function of a novel anthocyanin biosynthesis repressor gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA