Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 601(7): 1207-1224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36799478

RESUMEN

In heart, glucose and glycolysis are important for anaplerosis and potentially therefore for d-ß-hydroxybutyrate (ßHB) oxidation. As a glucose store, glycogen may also furnish anaplerosis. We determined the effects of glycogen content on ßHB oxidation and glycolytic rates, and their downstream effects on energetics, in the isolated rat heart. High glycogen (HG) and low glycogen (LG) containing hearts were perfused with 11 mM [5-3 H]glucose and/or 4 mM [14 C]ßHB to measure glycolytic rates or ßHB oxidation, respectively, then freeze-clamped for glycogen and metabolomic analyses. Free cytosolic [NAD+ ]/[NADH] and mitochondrial [Q+ ]/[QH2 ] ratios were estimated using the lactate dehydrogenase and succinate dehydrogenase reaction, respectively. Phosphocreatine (PCr) and inorganic phosphate (Pi ) concentrations were measured using 31 P-nuclear magnetic resonance spectroscopy. Rates of ßHB oxidation in LG hearts were half that in HG hearts, with ßHB oxidation directly proportional to glycogen content. ßHB oxidation decreased glycolysis in all hearts. Glycogenolysis in glycogen-replete hearts perfused with ßHB alone was twice that of hearts perfused with ßHB and glucose, which had significantly higher levels of the glycolytic intermediates fructose 1,6-bisphosphate and 3-phosphoglycerate, and higher free cytosolic [NAD+ ]/[NADH]. ßHB oxidation increased the Krebs cycle intermediates citrate, 2-oxoglutarate and succinate, the total NADP/H pool, reduced mitochondrial [Q+ ]/[QH2 ], and increased the calculated free energy of ATP hydrolysis (∆GATP ). Although ßHB oxidation inhibited glycolysis, glycolytic intermediates were not depleted, and cytosolic free NAD remained oxidised. ßHB oxidation alone increased Krebs cycle intermediates, reduced mitochondrial Q and increased ∆GATP . We conclude that glycogen facilitates cardiac ßHB oxidation by anaplerosis. KEY POINTS: Ketone bodies (d-ß-hydroxybutyrate, acetoacetate) are increasingly recognised as important cardiac energetic substrates, in both healthy and diseased hearts. As 2-carbon equivalents they are cataplerotic, causing depletion of Krebs cycle intermediates; therefore their utilisation requires anaplerotic supplementation, and intra-myocardial glycogen has been suggested as a potential anaplerotic source during ketone oxidation. It is demonstrated here that cardiac glycogen does indeed provide anaplerotic substrate to facilitate ß-hydroxybutyrate oxidation in isolated perfused rat heart, and this contribution was quantified using a novel pulse-chase metabolic approach. Further, using metabolomics and 31 P-MR, it was shown that glycolytic flux from myocardial glycogen increased the heart's ability to oxidise ßHB, and ßHB oxidation increased the mitochondrial redox potential, ultimately increasing the free energy of ATP hydrolysis.


Asunto(s)
Glucógeno , NAD , Ratas , Animales , NAD/metabolismo , Glucógeno/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Glucólisis , Oxidación-Reducción , Miocardio/metabolismo , Cuerpos Cetónicos/metabolismo , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo
2.
Basic Res Cardiol ; 117(1): 17, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35357563

RESUMEN

Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.


Asunto(s)
Núcleo Celular , Miocardio , Animales , Expresión Génica , Mamíferos , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
3.
Biochem Soc Trans ; 50(1): 269-281, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35129611

RESUMEN

Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.


Asunto(s)
Infarto del Miocardio , Trasplante de Células Madre , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Regeneración , Células del Estroma/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(26): 13122-13130, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31152133

RESUMEN

Iron deficiency augments hypoxic pulmonary arterial pressure in healthy individuals and exacerbates pulmonary arterial hypertension (PAH) in patients, even without anemia. Conversely, iron supplementation has been shown to be beneficial in both settings. The mechanisms underlying the effects of iron availability are not known, due to lack of understanding of how cells of the pulmonary vasculature respond to changes in iron levels. The iron export protein ferroportin (FPN) and its antagonist peptide hepcidin control systemic iron levels by regulating release from the gut and spleen, the sites of absorption and recycling, respectively. We found FPN to be present in pulmonary arterial smooth muscle cells (PASMCs) and regulated by hepcidin cell autonomously. To interrogate the importance of this regulation, we generated mice with smooth muscle-specific knock in of the hepcidin-resistant isoform fpn C326Y. While retaining normal systemic iron levels, this model developed PAH and right heart failure as a consequence of intracellular iron deficiency and increased expression of the vasoconstrictor endothelin-1 (ET-1) within PASMCs. PAH was prevented and reversed by i.v. iron and by the ET receptor antagonist BQ-123. The regulation of ET-1 by iron was also demonstrated in healthy humans exposed to hypoxia and in PASMCs from PAH patients with mutations in bone morphogenetic protein receptor type II. Such mutations were further associated with dysregulation of the HAMP/FPN axis in PASMCs. This study presents evidence that intracellular iron deficiency specifically within PASMCs alters pulmonary vascular function. It offers a mechanistic underpinning for the known effects of iron availability in humans.


Asunto(s)
Deficiencias de Hierro , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/etiología , Arteria Pulmonar/patología , Administración Intravenosa , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Modelos Animales de Enfermedad , Antagonistas de los Receptores de la Endotelina A/administración & dosificación , Endotelina-1/metabolismo , Técnicas de Sustitución del Gen , Hepcidinas/metabolismo , Humanos , Hierro/administración & dosificación , Masculino , Ratones , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/prevención & control , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Receptor de Endotelina A/metabolismo , Regulación hacia Arriba
5.
Nature ; 522(7554): 62-7, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25992544

RESUMEN

The lymphatic vasculature is a blind-ended network crucial for tissue-fluid homeostasis, immune surveillance and lipid absorption from the gut. Recent evidence has proposed an entirely venous-derived mammalian lymphatic system. By contrast, here we show that cardiac lymphatic vessels in mice have a heterogeneous cellular origin, whereby formation of at least part of the cardiac lymphatic network is independent of sprouting from veins. Multiple Cre­lox-based lineage tracing revealed a potential contribution from the putative haemogenic endothelium during development, and discrete lymphatic endothelial progenitor populations were confirmed by conditional knockout of Prox1 in Tie2+ and Vav1+ compartments. In the adult heart, myocardial infarction promoted a significant lymphangiogenic response, which was augmented by treatment with VEGF-C, resulting in improved cardiac function. These data prompt the re-evaluation of a century-long debate on the origin of lymphatic vessels and suggest that lymphangiogenesis may represent a therapeutic target to promote cardiac repair following injury.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/lesiones , Miocardio/citología , Animales , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Corazón/fisiología , Corazón/fisiopatología , Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Análisis Espacio-Temporal , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Venas/citología , Saco Vitelino/citología
6.
Circ Res ; 122(8): 1084-1093, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440071

RESUMEN

RATIONALE: Current cardiovascular clinical imaging techniques offer only limited assessment of innate immune cell-driven inflammation, which is a potential therapeutic target in myocardial infarction (MI) and other diseases. Hyperpolarized magnetic resonance (MR) is an emerging imaging technology that generates contrast agents with 10- to 20 000-fold improvements in MR signal, enabling cardiac metabolite mapping. OBJECTIVE: To determine whether hyperpolarized MR using [1-13C]pyruvate can assess the local cardiac inflammatory response after MI. METHODS AND RESULTS: We performed hyperpolarized [1-13C]pyruvate MR studies in small and large animal models of MI and in macrophage-like cell lines and measured the resulting [1-13C]lactate signals. MI caused intense [1-13C]lactate signal in healing myocardial segments at both day 3 and 7 after rodent MI, which was normalized at both time points after monocyte/macrophage depletion. A near-identical [1-13C]lactate signature was also seen at day 7 after experimental MI in pigs. Hyperpolarized [1-13C]pyruvate MR spectroscopy in macrophage-like cell suspensions demonstrated that macrophage activation and polarization with lipopolysaccharide almost doubled hyperpolarized lactate label flux rates in vitro; blockade of glycolysis with 2-deoxyglucose in activated cells normalized lactate label flux rates and markedly inhibited the production of key proinflammatory cytokines. Systemic administration of 2-deoxyglucose after rodent MI normalized the hyperpolarized [1-13C]lactate signal in healing myocardial segments at day 3 and also caused dose-dependent improvement in IL (interleukin)-1ß expression in infarct tissue without impairing the production of key reparative cytokines. Cine MRI demonstrated improvements in systolic function in 2-DG (2-deoxyglucose)-treated rats at 3 months. CONCLUSIONS: Hyperpolarized MR using [1-13C]pyruvate provides a novel method for the assessment of innate immune cell-driven inflammation in the heart after MI, with broad potential applicability across other cardiovascular disease states and suitability for early clinical translation.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/diagnóstico por imagen , Miocarditis/diagnóstico por imagen , Animales , Isótopos de Carbono/análisis , Técnicas de Imagen Sincronizada Cardíacas , Medios de Contraste , Desoxiglucosa/metabolismo , Desoxiglucosa/farmacología , Femenino , Glucólisis/efectos de los fármacos , Ácido Láctico/análisis , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Imagen por Resonancia Cinemagnética/métodos , Ratones , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Miocarditis/inmunología , Miocarditis/metabolismo , Miocardio/inmunología , Miocardio/metabolismo , Ácido Pirúvico/análisis , Células RAW 264.7 , Ratas , Ratas Wistar , Porcinos
7.
Biopolymers ; 110(8): e23278, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30958569

RESUMEN

Tissue engineers have achieved limited success so far in designing an ideal scaffold for aortic valve; scaffolds lack in mechanical compatibility, appropriate degradation rate, and microstructural similarity. This paper, therefore, has demonstrated a carbodiimide-based sequential crosslinking technique to prepare aortic valve extracellular matrix mimicking (ECM) hybrid scaffolds from collagen type I and hyaluronic acid (HA), the building blocks of heart valve ECM, with tailorable crosslinking densities. Swelling studies revealed that crosslinking densities of parent networks increased with increasing the concentration of the crosslinking agents whereas crosslinking densities of hybrid scaffolds averaged from those of parent collagen and HA networks. Hybrid scaffolds also offered a wide range of pore size (66-126 µm) which fulfilled the criteria for valvular tissue regeneration. Scanning electron microscopy and images of Alcian blue-Periodic acid Schiff stained samples suggested that our crosslinking technique yielded an ECM mimicking microstructure with interlaced bands of collagen and HA in the hybrid scaffolds. The mutually reinforcing networks of collagen and HA also resulted in increased bending moduli up to 1660 kPa which spanned the range of natural aortic valves. Cardio sphere-derived cells (CDCs) from rat hearts showed that crosslinking density affected the available cell attachment sites on the surface of the scaffold. Increased bending moduli of CDCs seeded scaffolds up to two folds (2-6 kPa) as compared to the non-seeded scaffolds (1 kPa) suggested that an increase in crosslinking density of the scaffolds could not only increase the in vitro bending modulus but also prevented its disintegration in the cell culture medium.


Asunto(s)
Colágeno Tipo I/química , Ácido Hialurónico/química , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Prótesis Valvulares Cardíacas , Miocardio/citología , Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley , Resistencia a la Tracción
8.
Nanomedicine ; 18: 391-401, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30448526

RESUMEN

Herein, we maximize the labeling efficiency of cardiac progenitor cells (CPCs) using perfluorocarbon nanoparticles (PFCE-NP) and 19F MRI detectability, determine the temporal dynamics of single-cell label uptake, quantify the temporal viability/fluorescence persistence of labeled CPCs in vitro, and implement in vivo, murine cardiac CPC MRI/tracking that could be translatable to humans. FuGENEHD-mediated CPC PFCE-NP uptake is confirmed with flow cytometry/confocal microscopy. Epifluorescence imaging assessed temporal viability/fluorescence (up to 7 days [D]). Nonlocalized murine 19F MRS and cardiac MRI studied label localization in terminal/longitudinal tracking studies at 9.4 T (D1-D8). A 4-8 fold 19F concentration increase is evidenced in CPCs for FuGENE vs. directly labeled cells. Cardiac 19F signals post-CPC injections diminished in vivo to ~31% of their values on D1 by D7/D8. Histology confirmed CPC retention, dispersion, and macrophage-induced infiltration. Intra-cardiac injections of PFCE-NP-labeled CPCs with FuGENE can be visualized/tracked in vivo for the first time with 19F MRI.


Asunto(s)
Rastreo Celular , Endocitosis , Flúor/química , Fluorocarburos/metabolismo , Imagen por Resonancia Magnética , Miocardio/citología , Nanopartículas/química , Células Madre/metabolismo , Animales , Supervivencia Celular , Femenino , Fluorescencia , Ratones Endogámicos C57BL , Relación Señal-Ruido , Factores de Tiempo
9.
Biophys J ; 114(12): 2764-2774, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925014

RESUMEN

Intramolecular junctions are a ubiquitous structure within DNA and RNA; three-way junctions in particular have high strain around the junction because of the lack of flexibility, preventing the junctions from adopting conformations that would allow for optimal folding. In this work, we used a combination of calorimetric and spectroscopic techniques to study the unfolding of four intramolecular three-way junctions. The control three-way junction, 3H, has the sequence d(GAAATTGCGCT5GCGCGTGCT5GCACAATTTC), which has three arms of different sequences. We studied three other three-way junctions in which one (2HS1H), two (HS12HS1), and three (HS1HS1HS1) cytosine bulges were placed at the junction to allow the arms to adopt a wider range of conformations that may potentially relieve strain. Through calorimetric studies, it was concluded that bulges produce only minor effects on the enthalpic and thermal stability at physiological salt concentrations for 2HS1H and HS1HS1HS1. HS12HS1 displays the strongest effect, with the GTGC stem lacking a defined transition. In addition to unfolding thermodynamics, the differential binding of counterions, water, and protons was determined. It was found that with each bulge, there was a large increase in the binding of counterions; this correlated with a decrease in the immobilization of structural water molecules. The increase in counterion uptake upon folding likely displaces binding of structural water, which is measured by the osmotic stress method, in favor of electrostricted waters. The cytosine bulges do not affect the binding of protons; this finding indicates that the bulges are not forming base-triplet stacks. These results indicate that bulges in junctions do not affect the unfolding profile or the enthalpy of oligonucleotides but do affect the number and amount of molecules immobilized by the junction.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , ARN/química , Secuencia de Bases , Calorimetría , Citosina/química , ADN/genética , Protones , ARN/genética , Termodinámica , Agua/química
10.
Biochemistry ; 57(39): 5666-5671, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30185020

RESUMEN

Members of the uracil-DNA glycosylase (UDG) enzyme family recognize and bind uracil, sequestering it within the binding site pocket and catalyzing the cleavage of the base from the deoxyribose, leaving an abasic site. The recognition and binding are passive and rely on innate dynamic motions of DNA wherein base pairs undergo thermally induced breakage and conformational fluctuations. Once the uracil breaks from its base pair, it can be recognized and bound by the enzyme, which then alters its conformation for sequestration and catalysis. Our results suggest that the thymine to uracil substitution, which differs only by a single methyl group, causes a destabilization of the duplex thermodynamics, which would lead to an increase in the population of the extrahelical state and increase the probability of uracil being recognized and excised from DNA by UDG. This destabilization is dependent on the identity of the nearest-neighbor base-pair stacks; a G·C nearest neighbor leads to thermal and enthalpic destabilization that is weaker that that seen with two A·T neighbors. In addition, uracil substitution yields a nearest-neighbor increase in the counterion uptake of the duplexes but decreases the level of immobilization of structural water for all substituted duplexes regardless of the neighbor identity or number of substitutions.


Asunto(s)
ADN/química , Timina/química , Uracil-ADN Glicosidasa/química , Uracilo/química , Emparejamiento Base , ADN/genética , Mutación , Conformación de Ácido Nucleico , Cloruro de Sodio/química , Termodinámica , Agua/química
11.
Phys Chem Chem Phys ; 20(7): 5046-5056, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29388988

RESUMEN

Tetraloops are a common way of changing the melting behavior of a DNA or RNA structure without changing the sequence of the stem. Because of the ubiquitous nature of tetraloops, our goal is to understand the effect a GCAA tetraloop, which belongs to the GNRA family of tetraloops, has on the unfolding thermodynamics of intramolecular junctions. Specifically, we have described the melting behavior of intramolecular three-way and four-way junctions where a T5 loop has been replaced with a GCAA tetraloops in different positions. Their thermodynamic profiles, including ΔnNa+ and ΔnW, were analyzed based on the position of the tetraloop. We obtained between -16.7 and -27.5 kcal mol-1 for all junctions studied. The experimental data indicates the influence of the GCAA tetraloop is primarily dictated by the native unfolding of the junction; if the tetraloop is placed on a stem that unfolds as a single domain when the tetraloop is not present, it will unfold as a single domain when the tetraloop is present but with a higher thermal stability. Conversely, if the tetraloop is placed on a stem which unfolds cooperatively with other stems when the tetraloop is not present, the tetraloop will increase the thermal stability of all the stems in the melting domain. The oligonucleotide structure and not the tetraloop itself affects ion uptake; three-way junctions do not gain an increase in ion uptake, but four-way junctions do. This is not the case for water immobilization, where the position of the tetraloop dictates the amount of water immobilized.


Asunto(s)
ADN/química , Modelos Moleculares , ARN/química , Secuencia de Bases , Rastreo Diferencial de Calorimetría , Calor , Enlace de Hidrógeno , Conformación de Ácido Nucleico , Termodinámica , Agua
12.
Proc Natl Acad Sci U S A ; 112(10): 3164-9, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713362

RESUMEN

Iron is essential to the cell. Both iron deficiency and overload impinge negatively on cardiac health. Thus, effective iron homeostasis is important for cardiac function. Ferroportin (FPN), the only known mammalian iron-exporting protein, plays an essential role in iron homeostasis at the systemic level. It increases systemic iron availability by releasing iron from the cells of the duodenum, spleen, and liver, the sites of iron absorption, recycling, and storage respectively. However, FPN is also found in tissues with no known role in systemic iron handling, such as the heart, where its function remains unknown. To explore this function, we generated mice with a cardiomyocyte-specific deletion of Fpn. We show that these animals have severely impaired cardiac function, with a median survival of 22 wk, despite otherwise unaltered systemic iron status. We then compared their phenotype with that of ubiquitous hepcidin knockouts, a recognized model of the iron-loading disease hemochromatosis. The phenotype of the hepcidin knockouts was far milder, with normal survival up to 12 mo, despite far greater iron loading in the hearts. Histological examination demonstrated that, although cardiac iron accumulates within the cardiomyocytes of Fpn knockouts, it accumulates predominantly in other cell types in the hepcidin knockouts. We conclude, first, that cardiomyocyte FPN is essential for intracellular iron homeostasis and, second, that the site of deposition of iron within the heart determines the severity with which it affects cardiac function. Both findings have significant implications for the assessment and treatment of cardiac complications of iron dysregulation.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Corazón/fisiología , Homeostasis , Hierro/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Proc Natl Acad Sci U S A ; 112(9): E973-81, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691752

RESUMEN

Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Hipertrófica Familiar , Muerte Súbita , Desmosomas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Represoras , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Secuencia de Bases , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Bovinos , Línea Celular Transformada , Desmina/genética , Desmina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmosomas/genética , Desmosomas/metabolismo , Desmosomas/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Filamentos Intermedios , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Mutación Missense , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Eliminación de Secuencia
14.
Biophys J ; 113(3): 529-539, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793208

RESUMEN

Intramolecular three-way junctions are commonly found in both DNA and RNA. These structures are functionally relevant in ribozymes, riboswitches, rRNA, and during replication. In this work, we present a thermodynamic description of the unfolding of DNA intramolecular three-way junctions. We used a combination of spectroscopic and calorimetric techniques to investigate the folding/unfolding thermodynamics of two three-way junctions with a closed (Closed-J) or open (Open-J) junction and their appropriate control stem-loop motifs (GAAATT-Hp, CTATC-Hp, and Dumbbell). The overall results show that both junctions are stable over a wide range of salt concentrations. However, Open-J is more stable due to a higher enthalpy contribution from the formation of a higher number of basepair stacks whereas Closed-J has a defined structure and retains the basepair stacking of all three stems. The comparison of the experimental results of Closed-J and Open-J with those of their component stem-loop motifs allowed us to be more specific about their cooperative unfolding. For instance, Closed-J sacrifices thermal stability of the Dumbbell structure to maintain an overall folded state. At higher salt concentration, the simultaneous unfolding of the above domains is lost, resulting in the unfolding of the three separate stems. In contrast, the junction of Open-J in low salt retains the thermal and enthalpic stability of the Dumbbell structure although sacrificing stability of the CTATC stem. The relative stability of Dumbbell is the primary reason for the higher ΔG°(5), or free energy, value seen for Open-J at low salt. Higher salt not only maintains thermal stability of the Dumbbell structure in Open-J but causes the CTATC stem to fully fold.


Asunto(s)
ADN/química , Emparejamiento Base , Secuencia de Bases , ADN/genética , Desnaturalización de Ácido Nucleico , Temperatura de Transición
15.
J Am Chem Soc ; 139(41): 14443-14455, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28921984

RESUMEN

Intramolecular four-way junctions are structures present during homologous recombination, repair of double stranded DNA breaks, and integron recombination. Because of the wide range of biological processes four-way junctions are involved in, understanding how and under what conditions these structures form is critical. In this work, we used a combination of spectroscopic and calorimetric techniques to present a complete thermodynamic description of the unfolding of a DNA four-way junction (FWJ) and its appropriate control stem-loop motifs (Dumbbell, GAAATT-Hp, CTATC-Hp, GTGC-Hp, and GCGC-Hp). The overall results show that the four-way junction increases the cooperative unfolding of its stems, although the reason for this is unclear, as the arms do not unfold as coaxial stacks, and thus its melting behavior cannot be accurately described by its control molecules. This is in contrast to what has been seen for two- and three-way junctions. In addition, the lack of base stacking and the ΔHvH/ΔHcal ratio seen at low salt indicate the four-way junction exists as a mixture of conformations, one of which is most likely the open-X structure which has unpaired bases at the junction. This was confirmed by single value decomposition of CD and UV spectra. This indicates that at low salt there is a third spectroscopically distinct species, while at higher salt there are only two species, folded and unfolded. Based on the enthalpy, Δnion, and ΔnW, the dominant folded structure at high salt is most likely the antiparallel stacked-X structure.


Asunto(s)
Calorimetría , ADN/química , Emparejamiento Base , Secuencia de Bases , ADN/genética , Desnaturalización de Ácido Nucleico , Análisis Espectral , Termodinámica
16.
J Magn Reson Imaging ; 45(6): 1659-1667, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27990708

RESUMEN

PURPOSE: To assess the uptake, accumulation, temporal stability, and spatial localization of isoflurane (ISO) in the C57BL/6 mouse, and to identify its potential interference with the detection of labeled cardiac progenitor cells using 19 F MRI/MR spectroscopy (MRS). MATERIALS AND METHODS: Objectives are demonstrated using (a) in vitro ISO tests, (b) in vivo temporal accumulation/spatial localization C57BL/6 studies (n = 3), and (c) through injections of perfluoro-crown-ether (PFCE) labeled cardiac progenitor cells into femoral muscle areas of the murine hindlimb post-mortem (n = 1) using 1 H/19 F MRI/MRS at 9.4 Tesla. Data were acquired using double-gated spoiled gradient echo images and pulse-acquire spectra. For the in vivo study, the temporal stability of ISO resonances was quantified using coefficient of variability (CV) (5 min) estimates. RESULTS: Two ISO resonances were observed in vivo that correspond to the -CF3 and -OCHF2 moieties. CV values ranged between 3.2 and 6.4% (-CF3 ) and 6.4 and 11.2% (-OCHF2 ). Reductions of the ISO dose (2.0 to 1.7%) at 80 min postinduction had insignificant effects on ISO signals (P = 0.23; P = 0.71). PFCE-labeled cells exhibited a resonance at -16.25 ppm in vitro that did not overlap with the ISO resonances, a finding that is confirmed with MRS post-mortem using injected, labeled cells. Based on 19 F MRI, similar in vivo/post-mortem ISO compartmentalization was also confirmed in peripheral and thoracic skeletal muscles. CONCLUSION: Significant ISO accumulation was observed by 19 F MRS in vivo with temporally stable signals over 90 min postinduction. ISO effects on PFCE labels are anticipated to be minimal but may be more prominent for perfluoropolyether or perfluorooctyl bromide labels. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1659-1667.


Asunto(s)
Artefactos , Rastreo Celular/métodos , Éteres/farmacocinética , Fluorocarburos/farmacocinética , Isoflurano/farmacocinética , Imagen por Resonancia Magnética , Células Madre/citología , Células Madre/metabolismo , Animales , Células Cultivadas , Medios de Contraste , Radioisótopos de Flúor/farmacocinética , Isoflurano/farmacología , Masculino , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Células Madre/efectos de los fármacos , Distribución Tisular
17.
FASEB J ; 30(8): 2684-97, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27103577

RESUMEN

The role of peroxisome proliferator-activated receptor α (PPARα)-mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 wk before in vivo contractile function was measured using cine MRI. In isolated, perfused hearts, energetics were measured using (31)P magnetic resonance spectroscopy (MRS), and glycolysis and fatty acid oxidation were measured using [(3)H] labeling. Compared with a normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation, and mitochondrial uncoupling protein 3 (UCP3) levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations ([ATP]) and thereby, ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation, and UCP3 levels with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high-fat diet, with the result that [ATP] and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have occurred already in PPARα-deficient (PPARα(-/-)) mouse hearts and sustained function in hypoxia despite an inability for further metabolic remodeling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodeling in hypoxia, but is prevented by dietary fat.-Cole, M. A., Abd Jamil, A. H., Heather, L. C., Murray, A. J., Sutton, E. R., Slingo, M., Sebag-Montefiore, L., Tan, S. C., Aksentijevic, D., Gildea, O. S., Stuckey, D. J., Yeoh, K. K., Carr, C. A., Evans, R. D., Aasum, E., Schofield, C. J., Ratcliffe, P. J., Neubauer, S., Robbins, P. A., Clarke, K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury.


Asunto(s)
Adaptación Fisiológica , Grasas de la Dieta/efectos adversos , Corazón/efectos de los fármacos , Miocardio/metabolismo , Consumo de Oxígeno/fisiología , PPAR alfa/metabolismo , Alimentación Animal/análisis , Animales , Línea Celular , Grasas de la Dieta/administración & dosificación , Regulación de la Expresión Génica/fisiología , Corazón/fisiología , Masculino , Ratones , Miocitos Cardíacos/metabolismo , PPAR alfa/genética
18.
Inorg Chem ; 56(11): 6459-6476, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28517938

RESUMEN

Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinate protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.


Asunto(s)
Cobalto/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Níquel/metabolismo , Compuestos Organometálicos/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Cobalto/química , Proteínas de Escherichia coli/genética , Ácido Glutámico/química , Ligandos , Modelos Moleculares , Níquel/química , Compuestos Organometálicos/química , Proteínas Represoras/genética
19.
Artif Organs ; 41(8): 778-784, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27925237

RESUMEN

Decellularization offers great potential to the field of tissue engineering, as this method gives rise to scaffold material with the native organ architecture by removing all cellular material and leaving much of the extracellular matrix (ECM) intact. However, many parameters may affect decellularization efficacy and ECM retention and, therefore, decellularization protocols need to be optimized for specific needs. This requires robust methods for comparison of decellularized tissue composition. Various representation methods are used in literature to express tissue composition (DNA, glycosaminoglycans, collagen, other ECM proteins, and growth factors). Here, we present and compare the various methods used and demonstrate that normalization to either dry or wet decellularized weight might be misleading and may overestimate true component retention. Moreover, the magnitude of the confounding effect is likely to be decellularization treatment dependent. As a result, we propose alternative comparison strategies: normalization to whole organ or to a unit of whole initial organ weight. We believe proper assessment of decellularized tissue composition is paramount for the successful comparison of different decellularization protocols and clinical translation.


Asunto(s)
Matriz Extracelular/química , Miocardio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Colágeno/análisis , ADN/análisis , Matriz Extracelular/ultraestructura , Glicosaminoglicanos/análisis , Masculino , Miocardio/citología , Miocardio/ultraestructura , Ratas Sprague-Dawley , Ingeniería de Tejidos/normas , Agua/análisis
20.
J Physiol ; 594(2): 307-20, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26574233

RESUMEN

KEY POINTS: Adaptation to hypoxia makes the heart more oxygen efficient, by metabolising more glucose. In contrast, type 2 diabetes makes the heart metabolise more fatty acids. Diabetes increases the chances of the heart being exposed to hypoxia, but whether the diabetic heart can adapt and respond is unknown. In this study we show that diabetic hearts retain the ability to adapt their metabolism in response to hypoxia, with functional hypoxia signalling pathways. However, the hypoxia-induced changes in metabolism are additive to abnormal baseline metabolism, resulting in hypoxic diabetic hearts metabolising more fat and less glucose than controls. This stops the diabetic heart being able to recover its function when stressed. These results demonstrate that the diabetic heart retains metabolic flexibility to adapt to hypoxia, but is hindered by the baseline effects of the disease. This increases our understanding of how the diabetic heart is affected by hypoxia-associated complications of the disease. ABSTRACT: Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress.


Asunto(s)
Adaptación Fisiológica , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Animales , Hipoxia de la Célula , Glucógeno/metabolismo , Glucólisis , Ácido Láctico/metabolismo , Masculino , Mitocondrias Musculares/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA