Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37989591

RESUMEN

Interaural time differences (ITDs) are a major cue for sound localization and change with increasing head size. Since the barn owl's head width more than doubles in the month after hatching, we hypothesized that the development of their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, and then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adults. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Thus, experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. As a result, altered auditory input during development leads to long-lasting changes in the representation of ITD.Significance Statement The early life of barn owls is marked by increasing sensitivity to sound, and by increasing ITDs. Their prolonged post-hatch development allowed us to examine the role of altered auditory experience in the development of ITD detection circuits. We raised owls with a unilateral ear insert and found that their maps of ITD were altered by experience, but only in those tonotopic regions ipsilateral to the occluded ear that had not experienced auditory stimulation prior to insertion. This experience-induced plasticity allows the sound localization circuits to be customized to individual characteristics, such as the size of the head, and potentially to compensate for imbalanced hearing sensitivities between the left and right ears.


Asunto(s)
Localización de Sonidos , Estrigiformes , Animales , Localización de Sonidos/fisiología , Audición , Tronco Encefálico/fisiología , Estimulación Acústica , Vías Auditivas/fisiología
3.
Brain Behav Evol ; 98(1): 44-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36455518

RESUMEN

Crocodilians (alligators, crocodiles, and gharials) are the closet living relatives to birds and, as such, represent a key clade to understand the evolution of the avian brain. However, many aspects of crocodilian neurobiology remain unknown. In this paper, we address an important knowledge gap as there are no published studies of cerebellar connections in any crocodilian species. We used injections of retrograde tracers into the cerebellum of the American alligator (Alligator mississippiensis) to describe for the first time the origin of climbing and mossy fiber inputs. We found that inputs to the cerebellum in the American alligator are similar to those of other nonavian reptiles and birds. Retrograde labeled cells were found in the spinal cord, inferior olive, reticular formation, vestibular and cerebellar nuclei, as well as in nucleus ruber and surrounding tegmentum. Additionally, we found no retrogradely labeled cells in the anterior rhombencephalon which suggest that, like other nonavian reptiles, crocodilians may lack pontine nuclei. Similar to birds and other nonavian reptiles, we found inputs to the cerebellum from the pretectal nucleus lentiformis mesencephali. Additionally, we found retrogradely labeled neurons in two nuclei in the pretectum: the nucleus circularis and the interstitial nucleus of the posterior commissure. These pretectal projections have not been described in any other nonavian reptile to date, but they do resemble projections from the nucleus spiriformis medialis of birds. Our results show that many inputs to the cerebellum are highly conserved among sauropsids and that extensive pretectal inputs to the cerebellum are not exclusive to the avian brain. Finally, we suggest that the pontine nuclei of birds are an evolutionary novelty that may have evolved after the last common ancestor between birds and crocodilians, and may represent an intriguing case of convergent evolution with mammals.


Asunto(s)
Caimanes y Cocodrilos , Animales , Cerebelo , Tegmento Mesencefálico , Neuronas , Médula Espinal , Mamíferos
4.
J Exp Biol ; 225(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35724322

RESUMEN

The ability to sense and localize sound is so advantageous for survival that it is difficult to understand the almost 100 million year gap separating the appearance of early tetrapods and the emergence of an impedance-matching tympanic middle ear - which we normally regard as a prerequisite for sensitive hearing on land - in their descendants. Recent studies of hearing in extant atympanate vertebrates have provided significant insights into the ancestral state(s) and the early evolution of the terrestrial tetrapod auditory system. These reveal a mechanism for sound pressure detection and directional hearing in 'earless' atympanate vertebrates that may be generalizable to all tetrapods, including the earliest terrestrial species. Here, we review the structure and function of vertebrate tympanic middle ears and highlight the multiple acquisition and loss events that characterize the complex evolutionary history of this important sensory structure. We describe extratympanic pathways for sound transmission to the inner ear and synthesize findings from recent studies to propose a general mechanism for hearing in 'earless' atympanate vertebrates. Finally, we integrate these studies with research on tympanate species that may also rely on extratympanic mechanisms for acoustic reception of infrasound (<20 Hz) and with studies on human bone conduction mechanisms of hearing.


Asunto(s)
Oído Medio , Audición , Animales , Humanos , Sonido , Membrana Timpánica
5.
J Neurophysiol ; 125(3): 887-902, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33534648

RESUMEN

The configuration of lizard ears, where sound can reach both surfaces of the eardrums, produces a strongly directional ear, but the subsequent processing of sound direction by the auditory pathway is unknown. We report here on directional responses from the first stage, the auditory nerve. We used laser vibrometry to measure eardrum responses in Tokay geckos and in the same animals recorded 117 auditory nerve single fiber responses to free-field sound from radially distributed speakers. Responses from all fibers showed strongly lateralized activity at all frequencies, with an ovoidal directivity that resembled the eardrum directivity. Geckos are vocal and showed pronounced nerve fiber directionality to components of the call. To estimate the accuracy with which a gecko could discriminate between sound sources, we computed the Fisher information (FI) for each neuron. FI was highest just contralateral to the midline, front and back. Thus, the auditory nerve could provide a population code for sound source direction, and geckos should have a high capacity to differentiate between midline sound sources. In brain, binaural comparisons, for example, by IE (ipsilateral excitatory, contralateral inhibitory) neurons, should sharpen the lateralized responses and extend the dynamic range of directionality.NEW & NOTEWORTHY In mammals, the two ears are unconnected pressure receivers, and sound direction is computed from binaural interactions in the brain, but in lizards, the eardrums interact acoustically, producing a strongly directional response. We show strongly lateralized responses from gecko auditory nerve fibers to directional sound stimulation and high Fisher information on either side of the midline. Thus, already the auditory nerve provides a population code for sound source direction in the gecko.


Asunto(s)
Estimulación Acústica/métodos , Vías Auditivas/fisiología , Nervio Coclear/fisiología , Localización de Sonidos/fisiología , Vibración , Animales , Femenino , Lagartos , Masculino
6.
J Neurosci ; 39(20): 3882-3896, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30886018

RESUMEN

Detection of interaural time differences (ITDs) is crucial for sound localization in most vertebrates. The current view is that optimal computational strategies of ITD detection depend mainly on head size and available frequencies, although evolutionary history should also be taken into consideration. In archosaurs, which include birds and crocodiles, the brainstem nucleus laminaris (NL) developed into the critical structure for ITD detection. In birds, ITDs are mapped in an orderly array or place code, whereas in the mammalian medial superior olive, the analog of NL, maps are not found. As yet, in crocodilians, topographical representations have not been identified. However, nontopographic representations of ITD cannot be excluded due to different anatomical and ethological features of birds and crocodiles. Therefore, we measured ITD-dependent responses in the NL of anesthetized American alligators of either sex and identified the location of the recording sites by lesions made after recording. The measured extracellular field potentials, or neurophonics, were strongly ITD tuned, and their preferred ITDs correlated with the position in NL. As in birds, delay lines, which compensate for external time differences, formed maps of ITD. The broad distributions of best ITDs within narrow frequency bands were not consistent with an optimal coding model. We conclude that the available acoustic cues and the architecture of the acoustic system in early archosaurs led to a stable and similar organization in today's birds and crocodiles, although physical features, such as internally coupled ears, head size, or shape, and audible frequency range, vary among the two groups.SIGNIFICANCE STATEMENT Interaural time difference (ITD) is an important cue for sound localization, and the optimal strategies for encoding ITD in neuronal populations are the subject of ongoing debate. We show that alligators form maps of ITD very similar to birds, suggesting that their common archosaur ancestor reached a stable coding solution different from mammals. Mammals and diapsids evolved tympanic hearing independently, and local optima can be reached in evolution that are not considered by global optimal coding models. Thus, the presence of ITD maps in the brainstem may reflect a local optimum in evolutionary development. Our results underline the importance of comparative animal studies and show that optimal models must be viewed in the light of evolutionary processes.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Tronco Encefálico/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Neuronas/fisiología , Localización de Sonidos/fisiología , Estimulación Acústica , Animales , Evolución Biológica , Femenino , Masculino , Modelos Neurológicos , Factores de Tiempo
7.
Brain Behav Evol ; 95(1): 45-55, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32155640

RESUMEN

While in birds and mammals the cerebellum is a highly convoluted structure that consists of numerous transverse lobules, in most amphibians and reptiles it consists of only a single unfolded sheet. Orthogonal to the lobules, the cerebellum is comprised of sagittal zones that are revealed in the pattern of afferent inputs, the projection patterns of Purkinje cells, and Purkinje cell response properties, among other features. The expression of several molecular markers, such as aldolase C, is also parasagittally organized. Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme expressed in the cerebellar Purkinje cells of the vertebrate cerebellum. In birds, mammals, and some lizards (Ctenophoresspp.), ZII is expressed in a heterogenous fashion of alternating sagittal bands of high (ZII+) and low (ZII-) expression Purkinje cells. In contrast, turtles and snakes express ZII homogenously (ZII+) in their cerebella, but the pattern in crocodilians is unknown. Here, we examined the expression of ZII in two crocodilian species (Crocodylus niloticus and Alligator mississippiensis) to help determine the evolutionary origin of striped ZII expression in vertebrates. We expected crocodilians to express ZII in a striped (ZII+/ZII-) manner because of their close phylogenetic relationship to birds and their larger and more folded cerebellum compared to that of snakes and turtles. Contrary to our prediction, all Purkinje cells in the crocodilian cerebellum had a generally homogenous expression of ZII (ZII+) rather than clear ZII+/- stripes. Our results suggest that either ZII stripes were lost in three groups (snakes, turtles, and crocodilians) or ZII stripes evolved independently three times (lizards, birds, and mammals).


Asunto(s)
Caimanes y Cocodrilos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/enzimología , Animales
8.
J Neurophysiol ; 121(3): 1034-1047, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30575430

RESUMEN

Synaptic currents are frequently assumed to make a major contribution to the extracellular field potential (EFP). However, in any neuronal population, the explicit separation of synaptic sources from other contributions such as postsynaptic spikes remains a challenge. Here we take advantage of the simple organization of the barn owl nucleus laminaris (NL) in the auditory brain stem to isolate synaptic currents through the iontophoretic application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[ f]quinoxaline-7-sulfonamide (NBQX). Responses to auditory stimulation show that the temporal dynamics of the evoked synaptic contributions to the EFP are consistent with synaptic short-term depression (STD). The estimated time constants of an STD model fitted to the data are similar to the fast time constants reported from in vitro experiments in the chick. Overall, the putative synaptic EFPs in the barn owl NL are significant but small (<1% change of the variance by NBQX). This result supports the hypothesis that the EFP in NL is generated mainly by axonal spikes, in contrast to most other neuronal systems. NEW & NOTEWORTHY Synaptic currents are assumed to make a major contribution to the extracellular field potential in the brain, but it is hard to directly isolate these synaptic components. Here we take advantage of the simple organization of the barn owl nucleus laminaris in the auditory brain stem to isolate synaptic currents through the iontophoretic application of a synaptic blocker. We show that the responses are consistent with a simple model of short-term synaptic depression.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Potenciales Sinápticos , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico , Antagonistas de Aminoácidos Excitadores/farmacología , Quinoxalinas/farmacología , Estrigiformes
9.
J Neurophysiol ; 119(4): 1422-1436, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357463

RESUMEN

Extracellular field potentials (EFP) are widely used to evaluate in vivo neural activity, but identification of multiple sources and their relative contributions is often ambiguous, making the interpretation of the EFP difficult. We have therefore analyzed a model EFP from a simple brainstem circuit with separable pre- and postsynaptic components to determine whether we could isolate its sources. Our previous papers had shown that the barn owl neurophonic largely originates with spikes from input axons and synapses that terminate on the neurons in the nucleus laminaris (NL) (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010; Kuokkanen PT, Ashida G, Carr CE, Wagner H, Kempter R. J Neurophysiol 110: 117-130, 2013; McColgan T, Liu J, Kuokkanen PT, Carr CE, Wagner H, Kempter R. eLife 6: e26106, 2017). To determine how much the postsynaptic NL neurons contributed to the neurophonic, we recorded EFP responses in NL in vivo. Power spectral analyses showed that a small spectral component of the evoked response, between 200 and 700 Hz, could be attributed to the NL neurons' spikes, while nucleus magnocellularis (NM) spikes dominate the EFP at frequencies ≳1 kHz. Thus, spikes of NL neurons and NM axons contribute to the EFP in NL in distinct frequency bands. We conclude that if the spectral components of source types are different and if their activities can be selectively modulated, the identification of EFP sources is possible. NEW & NOTEWORTHY Extracellular field potentials (EFPs) generate clinically important signals, but their sources are incompletely understood. As a model, we have analyzed the auditory neurophonic in the barn owl's nucleus laminaris. There the EFP originates predominantly from spiking in the afferent axons, with spectral power ≳1 kHz, while postsynaptic laminaris neurons contribute little. In conclusion, the identification of EFP sources is possible if they have different spectral components and if their activities can be modulated selectively.


Asunto(s)
Potenciales de Acción/fisiología , Percepción Auditiva/fisiología , Tronco Encefálico/fisiología , Fenómenos Electrofisiológicos/fisiología , Neuronas/fisiología , Estrigiformes/fisiología , Animales , Axones/fisiología , Núcleo Coclear/fisiología , Electroencefalografía , Femenino , Masculino
10.
Acta Acust United Acust ; 104(5): 874-877, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30976274

RESUMEN

The auditory brainstem response (ABR) is generated in the auditory brainstem by local current sources, which also give rise to extracellular field potentials (EFPs). The origins of both the ABR and the EFP are not well understood. We have recently found that EFPs, especially their dipole behavior, may be dominated by the branching patterns and the activity of axonal terminal zones [1]. To test the hypothesis that axons also shape the ABR, we used the well-described barn owl early auditory system. We recorded the ABR and a series of EFPs between the brain surface and nucleus laminaris (NL) in response to binaural clicks. The ABR and the EFP within and around NL are correlated. Together, our data suggest that axonal dipoles within the barn owl nucleus laminaris contribute to the ABR wave III.

11.
Artículo en Inglés | MEDLINE | ID: mdl-28689296

RESUMEN

Adult barn owl hearing is acute, but development of this sense is not well understood. We, therefore, measured auditory brainstem responses in barn owls from before the onset of hearing (posthatch day 2, or P2) to adulthood (P69). The first consistent responses were detected at P4 for 1 and 2 kHz, followed by responses to 0.5 and 4 kHz at P9, and 5 kHz at P13. Sensitivity to higher frequencies increased with age, with responses to 12 kHz appearing about 2 months after hatching, once the facial ruff was mature. Therefore, these altricial birds achieve their sensitivity to sound during a prolonged period of development, which coincides with maturation of the skull and facial ruff (Haresign and Moiseff in Auk 105:699-705, 1988).


Asunto(s)
Tronco Encefálico/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Localización de Sonidos/fisiología , Estrigiformes/fisiología , Estimulación Acústica , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Vías Auditivas/fisiología , Umbral Auditivo/fisiología , Audición/fisiología , Psicoacústica , Factores de Tiempo
12.
J Exp Biol ; 220(Pt 22): 4270-4281, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28947499

RESUMEN

The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 µs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles.


Asunto(s)
Tronco Encefálico/fisiología , Neuronas/fisiología , Localización de Sonidos/fisiología , Tortugas/fisiología , Estimulación Acústica , Animales , Femenino , Masculino
13.
Brain Behav Evol ; 90(2): 131-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28988244

RESUMEN

The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement created by external sources. The potential to identify and localize these external sources may have been a major selection force in the evolution of the early vertebrate ear and in the processing of sound in the central nervous system. The intrinsic physiological polarization of sensory hair cells on the otolith organs confers sensitivity to the direction of stimulation, including the direction of particle motion at auditory frequencies. In extant fishes, afferents from otolithic end organs encode the axis of particle motion, which is conveyed to the dorsal regions of first-order octaval nuclei. This directional information is further enhanced by bilateral computations in the medulla and the auditory midbrain. We propose that similar direction-sensitive neurons were present in the early aquatic tetrapods and that selection for sound localization in air acted upon preexisting brain stem circuits like those in fishes. With movement onto land, the early tetrapods may have retained some sensitivity to particle motion, transduced by bone conduction, and later acquired new auditory papillae and tympanic hearing. Tympanic hearing arose in parallel within each of the major tetrapod lineages and would have led to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization.


Asunto(s)
Evolución Biológica , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Neuronas/citología , Neuronas/fisiología , Localización de Sonidos/fisiología , Animales , Vías Auditivas/citología , Vías Auditivas/fisiología , Aves/anatomía & histología , Aves/fisiología , Oído/anatomía & histología , Oído/fisiología , Peces/anatomía & histología , Peces/fisiología , Reptiles/anatomía & histología , Reptiles/fisiología
14.
Biol Cybern ; 110(4-5): 291-302, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27734148

RESUMEN

Lizard ears are coupled across the pharynx, and are very directional. In consequence all auditory responses should be directional, without a requirement for computation of sound source location. Crocodilian ears are connected through sinuses, and thus less tightly coupled. Coupling may improve the processing of low-frequency directional signals, while higher frequency signals appear to be progressively uncoupled. In both lizards and crocodilians, the increased directionality of the coupled ears leads to an effectively larger head and larger physiological range of ITDs. This increased physiological range is reviewed in the light of current theories of sound localization.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Oído/anatomía & histología , Oído/fisiología , Audición/fisiología , Lagartos/anatomía & histología , Lagartos/fisiología , Localización de Sonidos , Animales , Nervio Coclear/fisiología , Oído/inervación
15.
Biol Cybern ; 110(4-5): 237-246, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27838890

RESUMEN

ICE stands for internally coupled ears. More than half of the terrestrial vertebrates, such as frogs, lizards, and birds, as well as many insects, are equipped with ICE that utilize an air-filled cavity connecting the two eardrums. Its effect is pronounced and twofold. On the basis of a solid experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction iTD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source.


Asunto(s)
Oído/anatomía & histología , Oído/fisiología , Audición/fisiología , Acústica , Animales , Localización de Sonidos , Membrana Timpánica/fisiología
16.
J Acoust Soc Am ; 139(5): 3001, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250191

RESUMEN

Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.


Asunto(s)
Umbral Auditivo , Buceo , Patos/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Audición , Psicoacústica , Vocalización Animal , Estimulación Acústica , Acústica , Animales , Electroencefalografía , Femenino , Masculino , Espectrografía del Sonido , Especificidad de la Especie
17.
J Neurophysiol ; 114(3): 1862-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26224776

RESUMEN

Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD.


Asunto(s)
Tronco Encefálico/fisiología , Tiempo de Reacción , Navegación Espacial , Animales , Axones/fisiología , Femenino , Masculino , Estrigiformes , Transmisión Sináptica
18.
Artículo en Inglés | MEDLINE | ID: mdl-26156644

RESUMEN

There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676-680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.


Asunto(s)
Aves/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Audición/fisiología , Estimulación Acústica , Aire , Anestesia , Animales , Umbral Auditivo/fisiología , Buceo , Femenino , Masculino , Especificidad de la Especie , Vocalización Animal/fisiología
19.
Brain Behav Evol ; 86(1): 17-27, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26398572

RESUMEN

In this paper, we compare some of the neural strategies for sound localization and encoding interaural time differences (ITDs) in three predatory species of Reptilia, alligators, barn owls and geckos. Birds and crocodilians are sister groups among the extant archosaurs, while geckos are lepidosaurs. Despite the similar organization of their auditory systems, archosaurs and lizards use different strategies for encoding the ITDs that underlie localization of sound in azimuth. Barn owls encode ITD information using a place map, which is composed of neurons serving as labeled lines tuned for preferred spatial locations, while geckos may use a meter strategy or population code composed of broadly sensitive neurons that represent ITD via changes in the firing rate.


Asunto(s)
Vías Auditivas/fisiología , Evolución Biológica , Encéfalo/fisiología , Conducta Predatoria/fisiología , Localización de Sonidos/fisiología , Estimulación Acústica , Animales , Encéfalo/citología , Mapeo Encefálico , Neuronas/fisiología , Reptiles/fisiología , Especificidad de la Especie , Estrigiformes/fisiología
20.
J Exp Biol ; 217(Pt 7): 1094-107, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24671963

RESUMEN

Physiological and anatomical studies have suggested that alligators have unique adaptations for spatial hearing. Sound localization cues are primarily generated by the filtering of sound waves by the head. Different vertebrate lineages have evolved external and/or internal anatomical adaptations to enhance these cues, such as pinnae and interaural canals. It has been hypothesized that in alligators, directionality may be enhanced via the acoustic coupling of middle ear cavities, resulting in a pressure difference receiver (PDR) mechanism. The experiments reported here support a role for a PDR mechanism in alligator sound localization by demonstrating that (1) acoustic space cues generated by the external morphology of the animal are not sufficient to generate location cues that match physiological sensitivity, (2) continuous pathways between the middle ears are present to provide an anatomical basis for coupling, (3) the auditory brainstem response shows some directionality, and (4) eardrum movement is directionally sensitive. Together, these data support the role of a PDR mechanism in crocodilians and further suggest this mechanism is a shared archosaur trait, most likely found also in the extinct dinosaurs.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Oído Medio/anatomía & histología , Localización de Sonidos/fisiología , Membrana Timpánica/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Animales , Fenómenos Biofísicos , Nervio Coclear/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Cabeza/anatomía & histología , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA