Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(21): e103476, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32985719

RESUMEN

Organoids derived from mouse and human stem cells have recently emerged as a powerful tool to study organ development and disease. We here established a three-dimensional (3D) murine bronchioalveolar lung organoid (BALO) model that allows clonal expansion and self-organization of FACS-sorted bronchioalveolar stem cells (BASCs) upon co-culture with lung-resident mesenchymal cells. BALOs yield a highly branched 3D structure within 21 days of culture, mimicking the cellular composition of the bronchioalveolar compartment as defined by single-cell RNA sequencing and fluorescence as well as electron microscopic phenotyping. Additionally, BALOs support engraftment and maintenance of the cellular phenotype of injected tissue-resident macrophages. We also demonstrate that BALOs recapitulate lung developmental defects after knockdown of a critical regulatory gene, and permit modeling of viral infection. We conclude that the BALO model enables reconstruction of the epithelial-mesenchymal-myeloid unit of the distal lung, thereby opening numerous new avenues to study lung development, infection, and regenerative processes in vitro.


Asunto(s)
Enfermedades Pulmonares/patología , Pulmón/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Células Madre/fisiología , Animales , Ataxina-1/genética , Ataxina-1/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Células Endoteliales/citología , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Células Epiteliales/citología , Fibroblastos , Humanos , Pulmón/citología , Células Madre Mesenquimatosas , Ratones , Morfogénesis/genética , Morfogénesis/fisiología , Organogénesis/fisiología , Organoides/citología , Alveolos Pulmonares/citología , Alveolos Pulmonares/crecimiento & desarrollo , ARN Mensajero/metabolismo , Regeneración/genética , Regeneración/fisiología
2.
J Pathol ; 257(4): 494-500, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35608561

RESUMEN

The human lung is a relatively quiescent organ in the normal healthy state but contains stem/progenitor cells that contribute to normal tissue maintenance and either repair or remodeling in response to injury and disease. Maintenance or repair lead to proper restoration of functional lung tissue and maintenance of physiological functions, with remodeling resulting in altered structure and function that is typically associated with disease. Knowledge of cell types contributing to lung tissue maintenance and repair/remodeling have largely relied on mouse models of injury-repair and lineage tracing of local progenitors. Therefore, many of the functional alterations underlying remodeling in human lung disease have remained poorly defined. However, the advent of advanced genomics approaches to define the molecular phenotype of lung cells at single-cell resolution has paved the way for rapid advances in our understanding of cell types present within the normal human lung and changes that accompany disease. Here we summarize recent advances in our understanding of disease-related changes in the molecular phenotype of human lung epithelium that have emerged from single-cell transcriptomic studies. We focus attention on emerging concepts of epithelial transitional states that characterize the pathological remodeling that accompanies chronic lung diseases, including idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, cystic fibrosis, and asthma. Concepts arising from these studies are actively evolving and require corroborative studies to improve our understanding of disease mechanisms. Whenever possible, we highlight opportunities for providing a unified nomenclature in this rapidly advancing field of research. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Animales , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Enfermedades Pulmonares/patología , Ratones , Enfermedad Pulmonar Obstructiva Crónica/patología , Transcriptoma
3.
Cell Mol Life Sci ; 79(6): 302, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587837

RESUMEN

Fibroblast growth factor receptor 2b (Fgfr2b) signaling is essential throughout lung development to form the alveolar epithelial lineage. However, its role in alveolar epithelial type 2 cells (AT2s) homeostasis was recently considered dispensable. SftpcCreERT2; Fgfr2bflox/flox; tdTomatoflox/flox mice were used to delete Fgfr2b expression in cells belonging to the AT2 lineage, which contains mature AT2s and a novel SftpcLow lineage-traced population called "injury activated alveolar progenitors" or IAAPs. Upon continuous tamoxifen exposure for either 1 or 2 weeks to delete Fgfr2b, a shrinking of the AT2 population is observed. Mature AT2s exit the cell cycle, undergo apoptosis and fail to form alveolospheres in vitro. However, the lung morphometry appears normal, suggesting the involvement of compensatory mechanisms. In mutant lungs, IAAPs which escaped Fgfr2b deletion expand, display enhanced alveolosphere formation in vitro and increase drastically their AT2 signature, suggesting differentiation towards mature AT2s. Interestingly, a significant increase in AT2s and decrease in IAPPs occurs after a 1-week tamoxifen exposure followed by an 8-week chase period. Although mature AT2s partially recover their alveolosphere formation capabilities, the IAAPs no longer display this property. Single-cell RNA seq analysis confirms that AT2s and IAAPs represent stable and distinct cell populations and recapitulate some of their characteristics observed in vivo. Our results underscore the essential role played by Fgfr2b signaling in the maintenance of the AT2 lineage in the adult lung during homeostasis and suggest that the IAAPs could represent a new population of AT2 progenitors.


Asunto(s)
Pulmón , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Células Epiteliales Alveolares , Animales , Diferenciación Celular , Homeostasis , Pulmón/metabolismo , Ratones , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Tamoxifeno/farmacología
4.
Cell Mol Life Sci ; 79(12): 609, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36445537

RESUMEN

The specification, characterization, and fate of alveolar type 1 and type 2 (AT1 and AT2) progenitors during embryonic lung development are poorly defined. Current models of distal epithelial lineage formation fail to capture the heterogeneity and dynamic contribution of progenitor pools present during early development. Furthermore, few studies explore the pathways involved in alveolar progenitor specification and fate. In this paper, we build upon our previously published work on the regulation of airway epithelial progenitors by fibroblast growth factor receptor 2b (FGFR2b) signalling during early (E12.5) and mid (E14.5) pseudoglandular stage lung development. Our results suggest that a significant proportion of AT2 and AT1 progenitors are lineage-flexible during late pseudoglandular stage development, and that lineage commitment is regulated in part by FGFR2b signalling. We have characterized a set of direct FGFR2b targets at E16.5 which are likely involved in alveolar lineage formation. These signature genes converge on a subpopulation of AT2 cells later in development and are downregulated in AT2 cells transitioning to the AT1 lineage during repair after injury in adults. Our findings highlight the extensive heterogeneity of pneumocytes by elucidating the role of FGFR2b signalling in these cells during early airway epithelial lineage formation, as well as during repair after injury.


Asunto(s)
Células Epiteliales Alveolares , Pulmón , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Células Madre , Animales , Ratones , Desarrollo Embrionario , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Pulmón/embriología , Linaje de la Célula
5.
Am J Respir Cell Mol Biol ; 67(6): 623-631, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36036918

RESUMEN

The epithelium lining airspaces of the human lung is maintained by regional stem cells, including basal cells of pseudostratified airways and alveolar type 2 (AT2) pneumocytes of the gas-exchange region. Despite effective techniques for long-term preservation of airway basal cells, procedures for efficient preservation of functional epithelial cell types of the distal gas-exchange region are lacking. Here we detail a method for cryobanking of epithelial cells from either mouse or human lung tissue for preservation of their phenotypic and functional characteristics. Flow cytometric profiling, epithelial organoid-forming efficiency, and single-cell transcriptomic analysis were used to compare cells recovered from cryobanked tissue with those of freshly dissociated tissue. AT2 cells within single-cell suspensions of enzymatically digested cryobanked distal lung tissue retained expression of the pan-epithelial marker CD326 and the AT2 cell surface antigen recognized by monoclonal antibody HT II-280, allowing antibody-mediated enrichment and downstream analysis. Isolated AT2 cells from cryobanked tissue were comparable with those of freshly dissociated tissue both in their single-cell transcriptome and their capacity for in vitro organoid formation in three-dimensional cultures. We conclude that the cryobanking method described herein allows long-term preservation of distal human lung tissue for downstream analysis of lung cell function and molecular phenotype and is ideally suited for the creation of an easily accessible tissue resource for the research community.


Asunto(s)
Células Epiteliales , Pulmón , Humanos , Ratones , Animales , Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales Alveolares/metabolismo , Fenotipo
6.
Am J Respir Crit Care Med ; 203(6): 707-717, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991815

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is an insidious and fatal interstitial lung disease associated with declining pulmonary function. Accelerated aging, loss of epithelial progenitor cell function and/or numbers, and cellular senescence are implicated in the pathogenies of IPF.Objectives: We sought to investigate the role of alveolar type 2 (AT2) cellular senescence in initiation and/or progression of pulmonary fibrosis and therapeutic potential of targeting senescence-related pathways and senescent cells.Methods: Epithelial cells of 9 control donor proximal and distal lung tissues and 11 IPF fibrotic lung tissues were profiled by single-cell RNA sequencing to assesses the contribution of epithelial cells to the senescent cell fraction for IPF. A novel mouse model of conditional AT2 cell senescence was generated to study the role of cellular senescence in pulmonary fibrosis.Measurements and Main Results: We show that AT2 cells isolated from IPF lung tissue exhibit characteristic transcriptomic features of cellular senescence. We used conditional loss of Sin3a in adult mouse AT2 cells to initiate a program of p53-dependent cellular senescence, AT2 cell depletion, and spontaneous, progressive pulmonary fibrosis. We establish that senescence rather than loss of AT2 cells promotes progressive fibrosis and show that either genetic or pharmacologic interventions targeting p53 activation or senescence block fibrogenesis.Conclusions: Senescence of AT2 cells is sufficient to drive progressive pulmonary fibrosis. Early attenuation of senescence-related pathways and elimination of senescent cells are promising therapeutic approaches to prevent pulmonary fibrosis.


Asunto(s)
Envejecimiento/patología , Células Epiteliales Alveolares/patología , Senescencia Celular , Fibrosis Pulmonar Idiopática/patología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino
7.
Am J Respir Crit Care Med ; 203(10): 1275-1289, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33321047

RESUMEN

Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Humanos
8.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613675

RESUMEN

Glycogen storage diseases (GSDs) represent a model of pathological accumulation of glycogen disease in the kidney that, in animal models, results in nephropathy due to abnormal autophagy and mitochondrial function. Patients with Glycogen Storage Disease 1a (GSD1a) accumulate glycogen in the kidneys and suffer a disease resembling diabetic nephropathy that can progress to renal failure. In this study, we addressed whether urine-derived epithelial cells (URECs) from patients with GSD1a maintain their biological features, and whether they can be used as a model to study the renal and metabolic phenotypes of this genetic condition. Studies were performed on cells extracted from urine samples of GSD1a and healthy subjects. URECs were characterized after the fourth passage by transmission electron microscopy and immunofluorescence. Reactive oxygen species (ROS), at different glucose concentrations, were measured by fluorescent staining. We cultured URECs from three patients with GSD1a and three healthy controls. At the fourth passage, URECs from GSD1a patients maintained their massive glycogen content. GSD1a and control cells showed the ciliary structures of renal tubular epithelium and the expression of epithelial (E-cadherin) and renal tubular cells (aquaporin 1 and 2) markers. Moreover, URECs from both groups responded to changes in glucose concentrations by modulating ROS levels. GSD1a cells were featured by a specific response to the low glucose stimulus, which is the condition that more resembles the metabolic derangement of patients with GSD1a. Through this study, we demonstrated that URECs might represent a promising experimental model to study the molecular mechanisms leading to renal damage in GSD1a, due to pathological glycogen storage.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Enfermedad del Almacenamiento de Glucógeno , Células Epiteliales/metabolismo , Glucosa , Glucógeno , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Riñón/metabolismo , Fenotipo , Especies Reactivas de Oxígeno , Humanos
9.
Eur Respir J ; 58(5)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33863742

RESUMEN

Alveolar type 2 (AT2) cells are heterogeneous cells, with specialised AT2 subpopulations within this lineage exhibiting stem cell properties. However, the existence of quiescent, immature cells within the AT2 lineage that are activated during lung regeneration is unknown.SftpcCreERT2/+;tdTomatoflox/flox mice were used for the labelling of AT2 cells and labelled subpopulations were analysed by flow cytometry, quantitative PCR, assay for transposase-accessible chromatin using sequencing (ATAC-seq), gene arrays, pneumonectomy and culture of precision-cut lung slices. Single-cell RNA-sequencing (scRNA-seq) data from human lungs were analysed.In mice, we detected two distinct AT2 subpopulations, with low tdTomato level (TomLow) and high tdTomato level (TomHigh). TomLow cells express lower levels of the AT2 differentiation markers Fgfr2b and Etv5, while TomHigh, as bona fide mature AT2 cells, show higher levels of Sftpc, Sftpb, Sftpa1, Fgfr2b and Etv5 expression. ATAC-seq analysis indicates that TomLow and TomHigh cells constitute two distinct cell populations, with specific silencing of Sftpc, Rosa26 and cell cycle gene loci in the TomLow population. Upon pneumonectomy, the number of TomLow but not TomHigh cells increases and TomLow cells show upregulated expression of Fgfr2b, Etv5, Sftpc, Ccnd1 and Ccnd2 compared to Sham. TomLow cells overexpress programmed cell death 1 ligand 1 (PD-L1), an immune inhibitory membrane receptor ligand, which is used by flow cytometry to differentially isolate these two subpopulations. In the human lung, data mining of a recent scRNA-seq AT2 data set demonstrates the existence of a PD-L1 Pos population. Therefore, we have identified a novel population of AT2 quiescent, immature progenitor cells in mouse that expand upon pneumonectomy and we have provided evidence for the existence of such cells in human.


Asunto(s)
Antígeno B7-H1 , Neumonectomía , Células Epiteliales Alveolares , Animales , Cromatina , Pulmón , Ratones
10.
Mol Cell ; 51(6): 707-22, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24011590

RESUMEN

The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferation, whereas FGF-10 promotes receptor recycling and cell migration. By combining mass-spectrometry-based quantitative proteomics with fluorescence microscopy and biochemical methods, we find that FGF-10 specifically induces the rapid phosphorylation of tyrosine (Y) 734 on FGFR2b, which leads to PI3K and SH3BP4 recruitment. This complex is crucial for FGFR2b recycling and responses, given that FGF-10 stimulation of either FGFR2b_Y734F mutant- or SH3BP4-depleted cells switches the receptor endocytic route to degradation, resulting in decreased breast cancer cell migration and the inhibition of epithelial branching in mouse lung explants. Altogether, these results identify an intriguing ligand-dependent mechanism for the control of receptor fate and cellular outputs that may explain the pathogenic role of deregulated FGFR2b, thus offering therapeutic opportunities.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Proteómica , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Movimiento Celular , Ligandos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteolisis , Tirosina/metabolismo
11.
Am J Respir Crit Care Med ; 202(11): 1540-1550, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32692579

RESUMEN

Rationale: Declining lung function in patients with interstitial lung disease is accompanied by epithelial remodeling and progressive scarring of the gas-exchange region. There is a need to better understand the contribution of basal cell hyperplasia and associated mucosecretory dysfunction to the development of idiopathic pulmonary fibrosis (IPF).Objectives: We sought to decipher the transcriptome of freshly isolated epithelial cells from normal and IPF lungs to discern disease-dependent changes within basal stem cells.Methods: Single-cell RNA sequencing was used to map epithelial cell types of the normal and IPF human airways. Organoid and air-liquid interface cultures were used to investigate functional properties of basal cell subtypes.Measurements and Main Results: We found that basal cells included multipotent and secretory primed subsets in control adult lung tissue. Secretory primed basal cells include an overlapping molecular signature with basal cells obtained from the distal lung tissue of IPF lungs. We confirmed that NOTCH2 maintains undifferentiated basal cells and restricts basal-to-ciliated differentiation, and we present evidence that NOTCH3 functions to restrain secretory differentiation.Conclusions: Basal cells are dynamically regulated in disease and are specifically biased toward the expansion of the secretory primed basal cell subset in IPF. Modulation of basal cell plasticity may represent a relevant target for therapeutic intervention in IPF.


Asunto(s)
Plasticidad de la Célula , Proliferación Celular/genética , Autorrenovación de las Células/genética , Células Epiteliales/citología , Fibrosis Pulmonar Idiopática/genética , Mucosa Respiratoria/citología , Anciano , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Membrana Basal , Estudios de Casos y Controles , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Masculino , Persona de Mediana Edad , RNA-Seq , Mucosa Respiratoria/metabolismo , Análisis de la Célula Individual , Transcriptoma , Adulto Joven
12.
Development ; 144(14): 2618-2628, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619823

RESUMEN

Mechanisms that regulate tissue-specific progenitors for maintenance and differentiation during development are poorly understood. Here, we demonstrate that the co-repressor protein Sin3a is crucial for lung endoderm development. Loss of Sin3a in mouse early foregut endoderm led to a specific and profound defect in lung development with lung buds failing to undergo branching morphogenesis and progressive atrophy of the proximal lung endoderm with complete epithelial loss at later stages of development. Consequently, neonatal pups died at birth due to respiratory insufficiency. Further analysis revealed that loss of Sin3a resulted in embryonic lung epithelial progenitor cells adopting a senescence-like state with permanent cell cycle arrest in G1 phase. This was mediated at least partially through upregulation of the cell cycle inhibitors Cdkn1a and Cdkn2c. At the same time, loss of endodermal Sin3a also disrupted cell differentiation of the mesoderm, suggesting aberrant epithelial-mesenchymal signaling. Together, these findings reveal that Sin3a is an essential regulator for early lung endoderm specification and differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Puntos de Control del Ciclo Celular , Diferenciación Celular , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Pulmón/citología , Ratones , Ratones Noqueados , Organogénesis/genética , Organogénesis/fisiología , Embarazo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Complejo Correpresor Histona Desacetilasa y Sin3
13.
Cell Mol Life Sci ; 76(14): 2817-2832, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30887098

RESUMEN

The respiratory epithelium arises from alveolar epithelial progenitors which differentiate into alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. AT2 cells are stem cells in the lung critical for the repair process after injury. Mechanisms regulating AT1 and AT2 cell maturation are poorly defined. We report that the activation of the glucocorticoid pathway in an in vitro alveolar epithelial lineage differentiation assay led to increased AT2 marker Sftpc and decreased miR-142 expression. Using miR-142 KO mice, we demonstrate an increase in the AT2/AT1 cell number ratio. Overexpression of miR-142 in alveolar progenitor cells in vivo led to the opposite effect. Examination of the KO lungs at E18.5 revealed enhanced expression of miR-142 targets Apc, Ep300 and Kras associated with increased ß-catenin and p-Erk signaling. Silencing of miR-142 expression in lung explants grown in vitro triggers enhanced Sftpc expression as well as increased AT2/AT1 cell number ratio. Pharmacological inhibition of Ep300-ß-catenin but not Erk in vitro prevented the increase in Sftpc expression triggered by loss of miR-142. These results suggest that the glucocorticoid-miR-142-Ep300-ß-catenin signaling axis controls pneumocyte maturation.


Asunto(s)
Células Epiteliales Alveolares/citología , Linaje de la Célula , Pulmón/crecimiento & desarrollo , MicroARNs/genética , Organogénesis , Mucosa Respiratoria/citología , Células Epiteliales Alveolares/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Mucosa Respiratoria/fisiología
14.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L328-L333, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722559

RESUMEN

Asthma is characterized by a chronic inflammation and remodeling of the airways. Although inflammation can be controlled, therapeutic options to revert remodeling do not exist. Thus, there is a large and unmet need to understand the underlying molecular mechanisms to develop novel therapies. We previously identified a pivotal role for miR-142-3p in regulating airway smooth muscle (ASM) precursor cell proliferation during lung development by fine-tuning the Wingless/Integrase I (WNT) signaling. Thus, we here aimed to investigate the relevance of this interaction in asthma. We performed quantitative RT-PCR and immune staining in a murine model for ovalbumin-induced allergic airway inflammation and in bronchial biopsies from patients with asthma and isolated primary fibroblasts thereof. miR-142-3p was increased in hyperproliferative regions of lung in murine and human asthma, whereas this microRNA (miRNA) was excluded from regions with differentiated ASM cells. Increases in miR-142-3p were associated with a decrease of its known target Adenomatous polyposis coli. Furthermore, we observed a differential expression of miR-142-3p in bronchial biopsies from patients with early or late onset severe asthma, which coincided with a differential WNT signature. Our data suggest that miR-142-3p is involved in regulating the balance between proliferation and differentiation of ASM cells in asthma, possibly via controlling WNT signaling. Thus, this miRNA might be an interesting target to prevent ASM hyperproliferation in asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , MicroARNs/biosíntesis , Miocitos del Músculo Liso/metabolismo , Vía de Señalización Wnt , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Asma/patología , Asma/fisiopatología , Proliferación Celular , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Mioblastos del Músculo Liso/metabolismo , Mioblastos del Músculo Liso/patología , Miocitos del Músculo Liso/patología
16.
J Pathol ; 241(1): 91-103, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27770432

RESUMEN

Inflammation-induced FGF10 protein deficiency is associated with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants characterized by arrested alveolar development. So far, experimental evidence for a direct role of FGF10 in lung disease is lacking. Using the hyperoxia-induced neonatal lung injury as a mouse model of BPD, the impact of Fgf10 deficiency in Fgf10+/- versus Fgf10+/+ pups was investigated. In normoxia, no lethality of Fgf10+/+ or Fgf10+/- pups was observed. By contrast, all Fgf10+/- pups died within 8 days of hyperoxic injury, with lethality starting at day 5, whereas Fgf10+/+ pups were all alive. Lungs of pups from the two genotypes were collected on postnatal day 3 following normoxia or hyperoxia exposure for further analysis. In hyperoxia, Fgf10+/- lungs exhibited increased hypoalveolarization. Analysis by FACS of the Fgf10+/- versus control lungs in normoxia revealed a decreased ratio of alveolar epithelial type II (AECII) cells over total Epcam-positive cells. In addition, gene array analysis indicated reduced AECII and increased AECI transcriptome signatures in isolated AECII cells from Fgf10+/- lungs. Such an imbalance in differentiation is also seen in hyperoxia and is associated with reduced mature surfactant protein B and C expression. Attenuation of the activity of Fgfr2b ligands postnatally in the context of hyperoxia also led to increased lethality with decreased surfactant expression. In summary, decreased Fgf10 mRNA levels lead to congenital lung defects, which are compatible with postnatal survival, but which compromise the ability of the lungs to cope with sub-lethal hyperoxic injury. Fgf10 deficiency affects quantitatively and qualitatively the formation of AECII cells. In addition, Fgfr2b ligands are also important for repair after hyperoxia exposure in neonates. Deficient AECII cells could be an additional complication for patients with BPD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Factor 10 de Crecimiento de Fibroblastos/deficiencia , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Surfactantes Pulmonares/metabolismo , ARN Mensajero/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
17.
Dev Dyn ; 246(4): 285-290, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27884048

RESUMEN

Over the past decade, microRNA-142 (miR-142) is emerging as a major regulator of cell fate decision in the hematopoietic system. However, miR-142 is expressed in many other tissues, and recent evidence suggests that it may play a more pleiotropic role during embryonic development. In addition, miR-142 has been shown to play important functions in disease. miR-142 displays a functional role in cancer, virus infection, inflammation, and immune tolerance. Both a guide strand (miR-142-3p) and passenger strand (miR-142-5p) are generated from the miR-142 hairpin. miR-142-3p and -5p display overlapping but also independent target genes. Loss of function mouse models (genetrap, global knock out [KO], and conditional KO) have been reported and support the important role of miR-142 in different biological processes. This review will summarize the abundant literature already available for miR-142 and will lay the foundation for future works on this important microRNA. Developmental Dynamics 246:285-290, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Homeostasis , MicroARNs/fisiología , Organogénesis , Animales , Humanos , Tolerancia Inmunológica/genética , Inflamación/genética , Ratones , Neoplasias/genética
18.
Development ; 141(2): 296-306, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24353064

RESUMEN

The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10(iCre) knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1(-) E-Cad(-) Epcam(+) Pro-Spc(+) lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45(-) Cd31(-) Sca-1(+)). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Linaje de la Célula , Movimiento Celular , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Pulmón/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Embarazo , Alveolos Pulmonares/embriología , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo
19.
Development ; 141(6): 1272-81, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24553287

RESUMEN

The regulation of the balance between proliferation and differentiation in the mesenchymal compartment of the lung is largely uncharacterized, unlike its epithelial counterpart. In this study, we determined that miR-142-3p contributes to the proper proliferation of mesenchymal progenitors by controlling the level of WNT signaling. miR-142-3p can physically bind to adenomatous polyposis coli mRNA, functioning to regulate its expression level. In miR-142-3p loss-of-function experiments, proliferation of parabronchial smooth muscle cell progenitors is significantly impaired, leading to premature differentiation. Activation of WNT signaling in the mesenchyme, or Apc loss of function, can both rescue miR-142-3p knockdown. These findings show that in the embryonic lung mesenchyme, the microRNA machinery modulates the level of WNT signaling, adding an extra layer of control in the feedback loop between FGFR2C and ß-catenin-mediated WNT signaling.


Asunto(s)
Pulmón/embriología , Pulmón/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes APC , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Embarazo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
20.
BMC Biol ; 12: 21, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24661562

RESUMEN

BACKGROUND: The high-mobility-group (HMG) proteins are the most abundant non-histone chromatin-associated proteins. HMG proteins are present at high levels in various undifferentiated tissues during embryonic development and their levels are strongly reduced in the corresponding adult tissues, where they have been implicated in maintaining and activating stem/progenitor cells. Here we deciphered the role of the high-mobility-group AT-hook protein 2 (HMGA2) during lung development by analyzing the lung of Hmga2-deficient mice (Hmga2(-/-)). RESULTS: We found that Hmga2 is expressed in the mouse embryonic lung at the distal airways. Analysis of Hmga2(-/-) mice showed that Hmga2 is required for proper cell proliferation and distal epithelium differentiation during embryonic lung development. Hmga2 knockout led to enhanced canonical WNT signaling due to an increased expression of secreted WNT glycoproteins Wnt2b, Wnt7b and Wnt11 as well as a reduction of the WNT signaling antagonizing proteins GATA-binding protein 6 and frizzled homolog 2. Analysis of siRNA-mediated loss-of-function experiments in embryonic lung explant culture confirmed the role of Hmga2 as a key regulator of distal lung epithelium differentiation and supported the causal involvement of enhanced canonical WNT signaling in mediating the effect of Hmga2-loss-of-fuction. Finally, we found that HMGA2 directly regulates Gata6 and thereby modulates Fzd2 expression. CONCLUSIONS: Our results support that Hmga2 regulates canonical WNT signaling at different points of the pathway. Increased expression of the secreted WNT glycoproteins might explain a paracrine effect by which Hmga2-knockout enhanced cell proliferation in the mesenchyme of the developing lung. In addition, HMGA2-mediated direct regulation of Gata6 is crucial for fine-tuning the activity of WNT signaling in the airway epithelium. Our results are the starting point for future studies investigating the relevance of Hmga2-mediated regulation of WNT signaling in the adult lung within the context of proper balance between differentiation and self-renewal of lung stem/progenitor cells during lung regeneration in both homeostatic turnover and repair after injury.


Asunto(s)
Proteína HMGA2/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Vía de Señalización Wnt , Animales , Diferenciación Celular , Proliferación Celular , Embrión de Mamíferos/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Receptores Frizzled/metabolismo , Factor de Transcripción GATA6/metabolismo , Proteína HMGA2/deficiencia , Ratones , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA