Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 29(5): 1859-68, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630970

RESUMEN

Bicuspid aortic valves calcify at a significantly higher rate than normal aortic valves, a process that involves increased inflammation. Because we have previously found that bicuspid aortic valve experience greater stretch, we investigated the potential connection between stretch and inflammation in human aortic valve interstitial cells (AVICs). Microarray, quantitative PCR (qPCR), and protein assays performed on AVICs exposed to cyclic stretch showed that stretch was sufficient to increase expression of interleukin and metalloproteinase family members by more than 1.5-fold. Conditioned medium from stretched AVICs was sufficient to activate leukocytes. microRNA sequencing and qPCR experiments demonstrated that miR-148a-3p was repressed in both stretched AVICs (43% repression) and, as a clinical correlate, human bicuspid aortic valves (63% reduction). miR-148a-3p was found to be a novel repressor of IKBKB based on data from qPCR, luciferase, and Western blot experiments. Furthermore, increasing miR-148a-3p levels in AVICs was sufficient to decrease NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and NF-κB target gene expression. Our data demonstrate that stretch-mediated activation of inflammatory pathways is at least partly the result of stretch-repression of miR-148a-3p and a consequent failure to repress IKBKB. To our knowledge, we are the first to report that cyclic stretch of human AVICs activates inflammatory genes in a tissue-autonomous manner via a microRNA that regulates a central inflammatory pathway.


Asunto(s)
Válvula Aórtica/anomalías , Biomarcadores/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/genética , MicroARNs/genética , FN-kappa B/metabolismo , Válvula Aórtica/inmunología , Válvula Aórtica/metabolismo , Enfermedad de la Válvula Aórtica Bicúspide , Western Blotting , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Enfermedades de las Válvulas Cardíacas/inmunología , Humanos , Quinasa I-kappa B/genética , Inflamación/inmunología , Inflamación/patología , Monocitos/citología , Monocitos/metabolismo , FN-kappa B/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
2.
J Mol Cell Cardiol ; 79: 133-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25446186

RESUMEN

Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-ß (Tgf-ß) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-ß expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-ß inhibitor resulted in increased EMCM size. Functionally, Tgf-ß signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS.


Asunto(s)
Embrión de Mamíferos/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Estrés Mecánico , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Ratones , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miofibrillas/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
3.
JCI Insight ; 4(19)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31513548

RESUMEN

Perturbations in biomechanical stimuli during cardiac development contribute to congenital cardiac defects such as hypoplastic left heart syndrome (HLHS). This study sought to identify stretch-responsive pathways involved in cardiac development. miRNA-Seq identified miR-486 as being increased in cardiomyocytes exposed to cyclic stretch in vitro. The right ventricles (RVs) of patients with HLHS experienced increased stretch and had a trend toward higher miR-486 levels. Sheep RVs dilated from excessive pulmonary blood flow had 60% more miR-486 compared with control RVs. The left ventricles of newborn mice treated with miR-486 mimic were 16.9%-24.6% larger and displayed a 2.48-fold increase in cardiomyocyte proliferation. miR-486 treatment decreased FoxO1 and Smad signaling while increasing the protein levels of Stat1. Stat1 associated with Gata-4 and serum response factor (Srf), 2 key cardiac transcription factors with protein levels that increase in response to miR-486. This is the first report to our knowledge of a stretch-responsive miRNA that increases the growth of the ventricle in vivo.


Asunto(s)
Ventrículos Cardíacos/crecimiento & desarrollo , Síndrome del Corazón Izquierdo Hipoplásico/genética , MicroARNs/metabolismo , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Proliferación Celular/fisiología , Células Cultivadas , Ventrículos Cardíacos/metabolismo , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/patología , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Mecanotransducción Celular/fisiología , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Factor de Transcripción STAT1/metabolismo , Ovinos
4.
PLoS One ; 9(5): e96577, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24788418

RESUMEN

Aortic valve calcification is a significant and serious clinical problem for which there are no effective medical treatments. Individuals born with bicuspid aortic valves, 1-2% of the population, are at the highest risk of developing aortic valve calcification. Aortic valve calcification involves increased expression of calcification and inflammatory genes. Bicuspid aortic valve leaflets experience increased biomechanical strain as compared to normal tricuspid aortic valves. The molecular pathogenesis involved in the calcification of BAVs are not well understood, especially the molecular response to mechanical stretch. HOTAIR is a long non-coding RNA (lncRNA) that has been implicated with cancer but has not been studied in cardiac disease. We have found that HOTAIR levels are decreased in BAVs and in human aortic interstitial cells (AVICs) exposed to cyclic stretch. Reducing HOTAIR levels via siRNA in AVICs results in increased expression of calcification genes. Our data suggest that ß-catenin is a stretch responsive signaling pathway that represses HOTAIR. This is the first report demonstrating that HOTAIR is mechanoresponsive and repressed by WNT ß-catenin signaling. These findings provide novel evidence that HOTAIR is involved in aortic valve calcification.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Válvula Aórtica/anomalías , Válvula Aórtica/patología , Calcinosis/genética , Enfermedades de las Válvulas Cardíacas/patología , ARN Largo no Codificante/genética , Válvula Tricúspide/metabolismo , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Enfermedad de la Válvula Aórtica Bicúspide , Calcinosis/patología , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Enfermedades de las Válvulas Cardíacas/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/metabolismo , Estrés Fisiológico , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA