Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolomics ; 18(3): 18, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290545

RESUMEN

INTRODUCTION: Marine biofilms are the most widely distributed mode of life on Earth and drive biogeochemical cycling processes of most elements. Phosphorus (P) is essential for many biological processes such as energy transfer mechanisms, biological information storage and membrane integrity. OBJECTIVES: Our aim was to analyze the effect of a gradient of ecologically relevant phosphate concentrations on the biofilm-forming capacity and the metabolome of the marine bacterium Pseudoalteromonas lipolytica TC8. METHODS: In addition to the evaluation of the effect of different phosphate concentration on the biomass, structure and gross biochemical composition of biofilms of P. lipolytica TC8, untargeted metabolomics based on liquid chromatography-mass spectrometry (LC-MS) analysis was used to determine the main metabolites impacted by P-limiting conditions. Annotation of the most discriminating and statistically robust metabolites was performed through the concomitant use of molecular networking and MS/MS fragmentation pattern interpretation. RESULTS: At the lowest phosphate concentration, biomass, carbohydrate content and three-dimensional structures of biofilms tended to decrease. Furthermore, untargeted metabolomics allowed for the discrimination of the biofilm samples obtained at the five phosphate concentrations and the highlighting of a panel of metabolites mainly implied in such a discrimination. A large part of the metabolites of the resulting dataset were then putatively annotated. Ornithine lipids were found in increasing quantity when the phosphate concentration decreased, while the opposite trend was observed for oxidized phosphatidylethanolamines (PEs). CONCLUSION: This study demonstrated the suitability of LC-MS-based untargeted metabolomics for evaluating the effect of culture conditions on marine bacterial biofilms. More precisely, these results supported the high plasticity of the membrane of P. lipolytica TC8, while the role of the oxidized PEs remains to be clarified.


Asunto(s)
Metabolómica , Pseudoalteromonas , Biopelículas , Metaboloma , Metabolómica/métodos , Fosfatos/farmacología , Espectrometría de Masas en Tándem/métodos
2.
Mar Environ Res ; 192: 106241, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37922705

RESUMEN

Biofouling is a specific lifestyle including both marine prokaryotic and eukaryotic communities. Hydrodynamics are poorly studied parameters affecting biofouling formation. This study aimed to investigate how water dynamics in the Etel Estuary (Northwest Atlantic coasts of France) influences the colonization of artificial substrates. Hydrodynamic conditions, mainly identified as shear stress, were characterized by measuring current velocity, turbulence intensity and energy using Acoustic Doppler Current Profiler (ADCP). One-month biofouling was analyzed by coupling metabarcoding (16S rRNA, 18S rRNA and COI genes), untargeted metabolomics (liquid chromatography coupled with high-resolution mass spectrometry, LC-HRMS) and characterization of the main biochemical components of the microbial exopolymeric matrix. A higher richness was observed for biofouling communities (prokaryotes and eukaryotes) exposed to the strongest currents. Ectopleura (Cnidaria) and its putative symbionts Endozoicomonas (Gammaproteobacteria) were dominant in the less dynamic conditions. Eukaryotes assemblages were specifically shaped by shear stress, leading to drastic changes in metabolite profiles. Under high hydrodynamic conditions, the exopolymeric matrix increased and was composed of 6 times more polysaccharides than proteins, these latter playing a crucial role in the adhesion and cohesion properties of biofilms. This original multidisciplinary approach demonstrated the importance of shear stress on both the structure of marine biofouling and the metabolic response of these complex communities.


Asunto(s)
Incrustaciones Biológicas , Hidrodinámica , ARN Ribosómico 16S , Estuarios , Biopelículas
3.
Talanta ; 225: 121925, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592802

RESUMEN

Untargeted LC-MS based metabolomics is a useful approach in many research areas such as medicine, systems biology, environmental sciences or even ecology. In such an approach, annotation of metabolomes of non-model organisms remains a significant challenge. In this study, an analytical workflow combining a classical phytochemical approach, using the isolation and the full characterization of the chemical structure of natural products, together with the use of MS/MS-based molecular networking with various levels of restrictiveness was developed. This protocol was applied to the marine brown seaweed Taonia atomaria, a cosmopolitan algal species, and allowed to annotate more than 200 metabolites. First, the algal organic crude extracts were fractionated by flash-chromatography and the chemical structure of eight of the main chemical constituents of this alga were fully characterized by means of spectroscopic methods (1D and 2D NMR, HRMS). These compounds were further used as chemical standards. In a second step, the main fractions of the algal extracts were analyzed by UHPLC-MS/MS and the resulting data were uploaded to the Global Natural Products Social Molecular Networking platform (GNPS) to create several molecular networks (MNs). A first MN (MN-1) was built with restrictive parameters and allowed the creation of clusters composed by nodes with highly similar MS/MS spectra. Then, using database hits and chemical standards as "seed" nodes and/or similarity between MS/MS fragmentation pattern, the main clusters were easily annotated as common glycerolipids and phospholipids, much rare lipids -such as acylglycerylhydroxymethyl-N,N,N-trimethyl-ß-alanines or fulvellic acid derivatives- but also new glycerolipids bearing a terpene moiety. Lastly, the use of less and less constrained MNs allowed to further increase the number of annotated metabolites.


Asunto(s)
Metaboloma , Algas Marinas , Cromatografía Liquida , Metabolómica , Fitoquímicos , Espectrometría de Masas en Tándem
4.
NPJ Biofilms Microbiomes ; 7(1): 40, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888726

RESUMEN

Quorum sensing (QS) is a communication system used by bacteria to coordinate a wide panel of biological functions in a cell density-dependent manner. The Gram-negative Chromobacterium violaceum has previously been shown to use an acyl-homoserine lactone (AHL)-based QS to regulate various behaviors, including the production of proteases, hydrogen cyanide, or antimicrobial compounds such as violacein. By using combined metabolomic and proteomic approaches, we demonstrated that QS modulates the production of antimicrobial and toxic compounds in C. violaceum ATCC 12472. We provided the first evidence of anisomycin antibiotic production by this strain as well as evidence of its regulation by QS and identified new AHLs produced by C. violaceum ATCC 12472. Furthermore, we demonstrated that targeting AHLs with lactonase leads to major QS disruption yielding significant molecular and phenotypic changes. These modifications resulted in drastic changes in social interactions between C. violaceum and a Gram-positive bacterium (Bacillus cereus), a yeast (Saccharomyces cerevisiae), immune cells (murine macrophages), and an animal model (planarian Schmidtea mediterranea). These results underscored that AHL-based QS plays a key role in the capacity of C. violaceum to interact with micro- and macroorganisms and that quorum quenching can affect microbial population dynamics beyond AHL-producing bacteria and Gram-negative bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Chromobacterium/fisiología , Percepción de Quorum , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbiología Ambiental , Regulación Bacteriana de la Expresión Génica , Macrófagos/fisiología , Metaboloma , Metabolómica/métodos , Ratones , Proteoma , Proteómica/métodos , Saccharomyces cerevisiae/fisiología
5.
Front Microbiol ; 11: 494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269559

RESUMEN

Marine macroalgae constitute an important living resource in marine ecosystems and complex ecological interactions occur at their surfaces with microbial communities. In this context, the present study aimed to investigate how the surface metabolome of the algal holobiont Taonia atomaria could drive epiphytic microbiota variations at the thallus scale. First, a clear discrimination was observed between algal surface, planktonic and rocky prokaryotic communities. These data strengthened the hypothesis of an active role of the algal host in the selection of epiphytic communities. Moreover, significant higher epibacterial density and α-diversity were found at the basal algal parts compared to the apical ones, suggesting a maturation gradient of the community along the thallus. In parallel, a multiplatform mass spectrometry-based metabolomics study, using molecular networking to annotate relevant metabolites, highlighted a clear chemical differentiation at the algal surface along the thallus with similar clustering as for microbial communities. In that respect, higher amounts of sesquiterpenes, phosphatidylcholines (PCs), and diacylglycerylhydroxymethyl-N,N,N-trimethyl-ß-alanines (DGTAs) were observed at the apical regions while dimethylsulfoniopropionate (DMSP) and carotenoids were predominantly found at the basal parts of the thalli. A weighted UniFrac distance-based redundancy analysis linking the metabolomics and metabarcoding datasets indicated that these surface compounds, presumably of algal origin, may drive the zonal variability of the epibacterial communities. As only few studies were focused on microbiota and metabolome variation along a single algal thallus, these results improved our understanding about seaweed holobionts. Through this multi-omics approach at the thallus scale, we suggested a plausible scenario where the chemical production at the surface of T. atomaria, mainly induced by the algal physiology, could explain the specificity and the variations of the surface microbiota along the thallus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA