Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 580(7802): 220-226, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066140

RESUMEN

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences1. Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements2. These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles3-13. The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, α-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


Asunto(s)
Técnicas de Química Sintética , Cobre/química , Pentanos/química , Pentanos/síntesis química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/metabolismo , Ciclización , Preparaciones Farmacéuticas/metabolismo
2.
Mass Spectrom Rev ; 42(2): 779-795, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34632607

RESUMEN

Extracellular vesicles from plasma, other body fluids and cell culture media hold great promise in the search for biomarkers. Exosomes in particular, the vesicle type that is secreted after being produced in the endocytic pathway and having a diameter of 30-150 nm, are considered to be a conveyance for signaling molecules and, therefore, to hold valuable information regarding the health and activity status of the cells from which they are released. The vesicular nature of exosomes is central to all methods used to separate them from the highly abundant proteins in plasma and other fluids. The enrichment of the vesicles is essential for mass spectrometry-based analysis as they represent only a very small component of all plasma proteins. The progression of isolation techniques for exosomes from ultracentrifugation through chromatographic separation using hydrophobic packing materials shows that effective enrichment is possible and that high throughput approaches to exosome enrichment are achievable.


Asunto(s)
Exosomas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Ultracentrifugación , Exosomas/química , Espectrometría de Masas , Proteínas Sanguíneas/análisis
3.
Mol Cell Biochem ; 479(1): 85-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37036634

RESUMEN

The importance of sarcoplasmic reticulum (SR) Ca2+-handling in heart has led to detailed understanding of Ca2+-release and re-uptake protein complexes, while less is known about other endoplasmic reticulum (ER) functions in the heart. To more fully understand cardiac SR and ER functions, we analyzed cardiac microsomes based on their increased density through the actions of the SR Ca2+-ATPase (SERCA) and the ryanodine receptor that are highly active in cardiomyocytes. Crude cardiac microsomal vesicles loaded with Ca oxalate produced two higher density subfractions, MedSR and HighSR. Proteins from 20.0 µg of MV, MedSR, and HighSR protein were fractionated using SDS-PAGE, then trypsinized from 20 separate gel pieces, and analyzed by LC-MS/MS to determine protein content. From 62,000 individual peptide spectra obtained, we identified 1105 different proteins, of which 354 were enriched ≥ 2.0-fold in SR fractions compared to the crude membrane preparation. Previously studied SR proteins were all enriched, as were proteins associated with canonical ER functions. Contractile, mitochondrial, and sarcolemmal proteins were not enriched. Comparing the levels of SERCA-positive SR proteins in MedSR versus HighSR vesicles produced a range of SR subfraction enrichments signifying differing levels of Ca2+ leak co-localized in the same membrane patch. All known junctional SR proteins were more enriched in MedSR, while canonical ER proteins were more enriched in HighSR membrane. Proteins constituting other putative ER/SR subdomains also exhibited average Esub enrichment values (mean ± S.D.) that spanned the range of possible Esub values, suggesting that functional sets of proteins are localized to the same areas of the ER/SR membrane. We conclude that active Ca2+ loading of cardiac microsomes, reflecting the combined activities of Ca2+ uptake by SERCA, and Ca2+ leak by RyR, permits evaluation of multiple functional ER/SR subdomains. Sets of proteins from these subdomains exhibited similar enrichment patterns across membrane subfractions, reflecting the relative levels of SERCA and RyR present within individual patches of cardiac ER and SR.


Asunto(s)
Retículo Sarcoplasmático , Espectrometría de Masas en Tándem , Retículo Sarcoplasmático/metabolismo , Cromatografía Liquida , Retículo Endoplásmico/metabolismo , Microsomas/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Señalización del Calcio , Calcio/metabolismo
4.
Bioorg Med Chem Lett ; 31: 127669, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171218

RESUMEN

We report here the synthesis and characterization of a dual 5-HT7 / 5-HT2 receptor antagonist 3-(4-Fluoro-phenyl)-2-isopropyl-2,4,5,6,7,8-hexahydro-1,2,6-triaza-azulene (4j). 4j is a high affinity 5-HT7 and 5-HT2A receptor ligand having a pKi = 8.1 at both receptors. It behaves as an antagonist in an in vitro functional assay for 5-HT2A and as an inverse agonist in an in vitro functional assay for 5-HT7. In a validated in vivo model for central 5-HT7 activity in rats, blockade of 5-carboxamidotryptamine (5-CT) induced hypothermia, 4j shows efficacy at low doses (ED50 = 0.05 mg/kg, p.o., 1 h) and maximal efficacy was observed at 0.3 mg/kg p.o. with a corresponding plasma concentration of ~27 ng/ml. In a validated in vivo model for central 5-HT2A activity, blockade of 2,5-dimethoxy-4-iodoamphetamine (DOI) induced head-twitches in mice, 4j shows efficacy at low doses with an ED50 = 0.3 mg/kg p.o. Ex vivo receptor binding studies demonstrate that 4j occupied 5-HT2A receptor binding sites in the frontal cortex of the rat brain with an ED50 in good agreement with the ED50 value for central functional effect mediated by 5-HT2A receptor (ED50 = 0.8 mg/kg, p.o., 1 h).


Asunto(s)
Azepinas/farmacología , Descubrimiento de Drogas , Receptores de Serotonina 5-HT2/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Animales , Azepinas/síntesis química , Azepinas/química , Perros , Relación Dosis-Respuesta a Droga , Haplorrinos , Humanos , Ratones , Estructura Molecular , Ratas , Antagonistas de la Serotonina/síntesis química , Antagonistas de la Serotonina/química , Relación Estructura-Actividad
5.
J Cell Biochem ; 121(12): 4887-4897, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32628320

RESUMEN

Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.

6.
J Proteome Res ; 18(1): 417-425, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30404448

RESUMEN

We have performed deep proteomic profiling down to as few as 9 Panc-1 cells using sample fractionation, TMT multiplexing, and a carrier/reference strategy. Off line fractionation of the TMT-labeled sample pooled with TMT-labeled carrier Panc-1 whole cell proteome was achieved using alkaline reversed phase spin columns. The fractionation in conjunction with the carrier/reference (C/R) proteome allowed us to detect 47 414 unique peptides derived from 6261 proteins, which provided a sufficient coverage to search for single amino acid variants (SAAVs) related to cancer. This high sample coverage is essential in order to detect a significant number of SAAVs. In order to verify genuine SAAVs versus false SAAVs, we used the SAVControl pipeline and found a total of 79 SAAVs from the 9-cell Panc-1 sample and 174 SAAVs from the 5000-cell Panc-1 C/R proteome. The SAAVs as sorted into high confidence and low confidence SAAVs were checked manually. All the high confidence SAAVs were found to be genuine SAAVs, while half of the low confidence SAAVs were found to be false SAAVs mainly related to PTMs. We identified several cancer-related SAAVs including KRAS, which is an important oncoprotein in pancreatic cancer. In addition, we were able to detect sites involved in loss or gain of glycosylation due to the enhanced coverage available in these experiments where we can detect both sites of loss and gain of glycosylation.


Asunto(s)
Secuencia de Aminoácidos , Variación Genética , Proteoma/análisis , Tamaño de la Muestra , Análisis de la Célula Individual/métodos , Línea Celular , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteoma/genética , Proteómica/métodos
7.
BMC Bioinformatics ; 19(Suppl 14): 410, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30453876

RESUMEN

BACKGROUND: The prediction of calmodulin-binding (CaM-binding) proteins plays a very important role in the fields of biology and biochemistry, because the calmodulin protein binds and regulates a multitude of protein targets affecting different cellular processes. Computational methods that can accurately identify CaM-binding proteins and CaM-binding domains would accelerate research in calcium signaling and calmodulin function. Short-linear motifs (SLiMs), on the other hand, have been effectively used as features for analyzing protein-protein interactions, though their properties have not been utilized in the prediction of CaM-binding proteins. RESULTS: We propose a new method for the prediction of CaM-binding proteins based on both the total and average scores of known and new SLiMs in protein sequences using a new scoring method called sliding window scoring (SWS) as features for the prediction module. A dataset of 194 manually curated human CaM-binding proteins and 193 mitochondrial proteins have been obtained and used for testing the proposed model. The motif generation tool, Multiple EM for Motif Elucidation (MEME), has been used to obtain new motifs from each of the positive and negative datasets individually (the SM approach) and from the combined negative and positive datasets (the CM approach). Moreover, the wrapper criterion with random forest for feature selection (FS) has been applied followed by classification using different algorithms such as k-nearest neighbors (k-NN), support vector machines (SVM), naive Bayes (NB) and random forest (RF). CONCLUSIONS: Our proposed method shows very good prediction results and demonstrates how information contained in SLiMs is highly relevant in predicting CaM-binding proteins. Further, three new CaM-binding motifs have been computationally selected and biologically validated in this study, and which can be used for predicting CaM-binding proteins.


Asunto(s)
Proteínas de Unión a Calmodulina/química , Biología Computacional/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Teorema de Bayes , Calcio/metabolismo , Humanos , Probabilidad , Estructura Cuaternaria de Proteína , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte
8.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241319

RESUMEN

Intracellular signaling is controlled to a large extent by the phosphorylation status of proteins. To determine how human breast cells can be reprogrammed during tumorigenic progression, we profiled cell lines in the MCF10A lineage by phosphoproteomic analyses. A large cluster of proteins involved in RNA splicing were hypophosphorylated as cells progressed to a hyperplastic state, and then hyperphosphorylated after progression to a fully metastatic phenotype. A comprehensive transcriptomic approach was used to determine whether alterations in splicing factor phosphorylation status would be reflected in changes in mRNA splicing. Results indicated that the degree of mRNA splicing trended with the degree of tumorigenicity of the 4 cell lines tested. That is, highly metastatic cell cultures had the greatest number of genes with splice variants, and these genes had greater fluctuations in expression intensities. Genes with high splicing indices were mapped against gene ontology terms to determine whether they have known roles in cancer. This group showed highly significant associations for angiogenesis, cytokine-mediated signaling, cell migration, programmed cell death and epithelial cell differentiation. In summary, data from global profiling of a human model of breast cancer development suggest that therapeutics should be developed which target signaling pathways that regulate RNA splicing.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/patología , Carcinogénesis/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Comunicación Celular , Línea Celular Tumoral , Reprogramación Celular , Humanos , Fosforilación , Transducción de Señal , Transcriptoma
9.
BMC Immunol ; 18(1): 37, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716125

RESUMEN

BACKGROUND: Epidemiological evidence and animal models suggest that exposure to low and non-neurotoxic concentrations of mercury may contribute to idiosyncratic autoimmune disease. Since defects in function and signaling in B cells are often associated with autoimmunity, we investigated whether mercury exposure might alter B cell responsiveness to self-antigens by interfering with B cell receptor (BCR) signal transduction. In this study we determined the effects of mercury on the protein tyrosine kinase SYK, a critical protein involved in regulation of the BCR signaling pathway. METHODS: Phosphorylation sites of murine SYK were mapped before and after treatment of WEHI cell cultures with mercury, or with anti-IgM antibody (positive control) or pervanadate (a potent phosphatase inhibitor). Phosphopeptides were enriched by either titanium dioxide chromatography or anti-phosphotyrosine immunoaffinity, and analyzed by liquid chromatography-mass spectrometry. Select SYK phosphosite cluster regions were profiled for responsiveness to treatments using multiple reaction monitoring (MRM) methodology. RESULTS: A total of 23 phosphosites were identified with high probability in endogenous SYK, including 19 tyrosine and 4 serine residues. For 10 of these sites phosphorylation levels were increased following BCR activation. Using MRM to profile changes in phosphorylation status we found that 4 cluster regions, encompassing 8 phosphosites, were activated by mercury and differentially responsive to all 3 treatments. Phosphorylation of tyrosine-342 and -346 residues were most sensitive to mercury exposure. This cluster is known to propagate normal BCR signal transduction by recruiting adaptor proteins such as PLC-γ and Vav-1 to SYK during formation of the BCR signalosome. CONCLUSIONS: Our data shows that mercury alters the phosphorylation status of SYK on tyrosine sites known to have a role in promoting BCR signals. Considering the importance of SYK in the BCR signaling pathway, these data suggest that mercury can alter BCR signaling in B cells, which might affect B cell responsiveness to self-antigen and have implications with respect to autoimmunity and autoimmune disease.


Asunto(s)
Linfocitos B/efectos de los fármacos , Linfocitos B/enzimología , Mercurio/toxicidad , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Quinasa Syk/metabolismo , Animales , Anticuerpos Antiidiotipos/farmacología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Receptores de Antígenos de Linfocitos B/agonistas , Receptores de Antígenos de Linfocitos B/efectos de los fármacos , Receptores de Antígenos de Linfocitos B/metabolismo , Quinasa Syk/antagonistas & inhibidores , Quinasa Syk/química , Espectrometría de Masas en Tándem , Tirosina/metabolismo , Vanadatos/farmacología
10.
J Neural Transm (Vienna) ; 124(1): 13-23, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27145767

RESUMEN

Spinal muscular atrophy is an autosomal recessive motor neuron disease caused by a genetic defect carried by as many as one in 75 people. Unlike most neurological disorders, we know exactly what the genetic basis is of the disorder, but in spite of this, have little understanding of why the low levels of one protein, survival motor neuron protein, results in the specific progressive die back of only one cell type in the body, the motor neuron. Given the fact that all cells in the body of a patient with spinal muscular atrophy share the same low abundance of the protein throughout development, an appropriate approach is to ask how lower levels of survival motor neuron protein affects the proteome of embryonic stem cells prior to development. Convergent biostatistical analyses of a discovery proteomic analysis of these cells provide results that are consistent with the pathomechanistic fate of the developed motor neuron.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteoma , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Células Cultivadas , Discapacidades del Desarrollo/metabolismo , Espectrometría de Masas , Ratones , Atrofia Muscular Espinal/metabolismo , Proteómica
11.
Cereb Cortex ; 26(3): 1059-71, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25452577

RESUMEN

Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by mutations in the TSC1 and TSC2 genes. Over 80% of TSC patients are affected by epilepsy, but the molecular events contributing to seizures in TSC are not well understood. Recent reports have demonstrated that the brain is enriched with microRNA activity, and they are critical in neural development and function. However, little is known about the role of microRNAs in TSC. Here, we report the characterization of aberrant microRNA activity in cortical tubers resected from 5 TSC patients surgically treated for medically intractable epilepsy. By comparing epileptogenic tubers with adjacent nontuber tissue, we identified a set of 4 coordinately overexpressed microRNAs (miRs 23a, 34a, 34b*, 532-5p). We used quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic profiling to investigate the combined effect of the 4 microRNAs on target proteins. The proportion of repressed proteins among the predicted targets was significantly greater than in the overall proteome and was highly enriched for proteins involved in synaptic signal transmission. Among the combinatorial targets were TSC1, coding for the protein hamartin, and several epilepsy risk genes. We found decreased levels of hamartin in epileptogenic tubers and confirmed targeting of the TSC1 3' UTR by miRs-23a and 34a.


Asunto(s)
Encéfalo/metabolismo , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , MicroARNs/metabolismo , Esclerosis Tuberosa/metabolismo , Encéfalo/cirugía , Niño , Preescolar , Cromatografía Liquida , Epilepsia Refractaria/epidemiología , Epilepsia Refractaria/cirugía , Femenino , Humanos , Masculino , Análisis por Micromatrices , FN-kappa B/metabolismo , Proteoma , Reacción en Cadena en Tiempo Real de la Polimerasa , Riesgo , Sinapsis/metabolismo , Espectrometría de Masas en Tándem , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/cirugía , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
12.
J Pharmacol Exp Ther ; 357(2): 394-414, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26989142

RESUMEN

Members of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) subtype of ionotropic glutamate receptors mediate the majority of fast synaptic transmission within the mammalian brain and spinal cord, representing attractive targets for therapeutic intervention. Here, we describe novel AMPA receptor modulators that require the presence of the accessory protein CACNG8, also known as transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8). Using calcium flux, radioligand binding, and electrophysiological assays of wild-type and mutant forms of TARP-γ8, we demonstrate that these compounds possess a novel mechanism of action consistent with a partial disruption of the interaction between the TARP and the pore-forming subunit of the channel. One of the molecules, 5-[2-chloro-6-(trifluoromethoxy)phenyl]-1,3-dihydrobenzimidazol-2-one (JNJ-55511118), had excellent pharmacokinetic properties and achieved high receptor occupancy following oral administration. This molecule showed strong, dose-dependent inhibition of neurotransmission within the hippocampus, and a strong anticonvulsant effect. At high levels of receptor occupancy in rodent in vivo models, JNJ-55511118 showed a strong reduction in certain bands on electroencephalogram, transient hyperlocomotion, no motor impairment on rotarod, and a mild impairment in learning and memory. JNJ-55511118 is a novel tool for reversible AMPA receptor inhibition, particularly within the hippocampus, with potential therapeutic utility as an anticonvulsant or neuroprotectant. The existence of a molecule with this mechanism of action demonstrates the possibility of pharmacological targeting of accessory proteins, increasing the potential number of druggable targets.


Asunto(s)
Bencimidazoles/uso terapéutico , Canales de Calcio/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Receptores AMPA/efectos de los fármacos , Animales , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Diseño de Fármacos , Electroencefalografía/efectos de los fármacos , Células HEK293 , Humanos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Mutación/genética , Neuronas/efectos de los fármacos , Equilibrio Postural/efectos de los fármacos , Ratas Sprague-Dawley , Receptores AMPA/genética
13.
Bioorg Med Chem Lett ; 26(2): 257-261, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26707399

RESUMEN

The synthesis, SAR, and preclinical characterization of a series of substituted 6,7-dihydro[1,2,4]triazolo[4,3]pyrazin-8(5H)-one P2X7 receptor antagonists are described. Optimized leads from this series comprise some of the most potent human P2X7R antagonists reported to date (IC50s<1nM). They also exhibit sufficient potency and oral bioavailability in rat to enable extensive in vivo profiling. Although many of the disclosed compounds are peripherally restricted, compound 11d is brain penetrant and upon oral administration demonstrated dose-dependent target engagement in rat hippocampus as determined by ex vivo receptor occupancy with radiotracer 5 (ED50=0.8mg/kg).


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Pirazinas/farmacología , Triazoles/farmacología , Animales , Barrera Hematoencefálica/metabolismo , Células CACO-2 , Fármacos del Sistema Nervioso Central/síntesis química , Fármacos del Sistema Nervioso Central/farmacocinética , Hipocampo/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Antagonistas del Receptor Purinérgico P2X/síntesis química , Antagonistas del Receptor Purinérgico P2X/farmacocinética , Pirazinas/síntesis química , Pirazinas/farmacocinética , Ratas , Receptores Purinérgicos P2X7/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/farmacocinética , Tritio
14.
Mol Pharmacol ; 88(5): 911-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26349500

RESUMEN

GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding, calcium mobilization, and extracellular signal-regulated kinases phosphorylation assays. Amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) activated GPR139, with EC50 values in the 30- to 300-µM range, consistent with the physiologic concentrations of L-Trp and L-Phe in tissues. Chromatography of rat brain, rat serum, and human serum extracts revealed two peaks of GPR139 activity, which corresponded to the elution peaks of L-Trp and L-Phe. With the purpose of identifying novel tools to study GPR139 function, a high-throughput screening campaign led to the identification of a selective small-molecule agonist [JNJ-63533054, (S)-3-chloro-N-(2-oxo-2-((1-phenylethyl)amino)ethyl) benzamide]. The tritium-labeled JNJ-63533054 bound to cell membranes expressing GPR139 and could be specifically displaced by L-Trp and L-Phe. Sequence alignment revealed that GPR139 is highly conserved across species, and RNA sequencing studies of rat and human tissues indicated its exclusive expression in the brain and pituitary gland. Immunohistochemical analysis showed specific expression of the receptor in circumventricular regions of the habenula and septum in mice. Together, these findings suggest that L-Trp and L-Phe are candidate physiologic ligands for GPR139, and we hypothesize that this receptor may act as a sensor to detect dynamic changes of L-Trp and L-Phe in the brain.


Asunto(s)
Habénula/química , Proteínas del Tejido Nervioso/fisiología , Fenilalanina/fisiología , Receptores Acoplados a Proteínas G/fisiología , Tabique del Cerebro/química , Triptófano/fisiología , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/efectos de los fármacos , Fenilalanina/sangre , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análisis , Receptores Acoplados a Proteínas G/efectos de los fármacos , Triptófano/sangre
15.
J Pharmacol Exp Ther ; 352(3): 590-601, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25583879

RESUMEN

Orexins (OXs) are peptides produced by perifornical (PeF) and lateral hypothalamic neurons that exert a prominent role in arousal-related processes, including stress. A critical role for the orexin-1 receptor (OX1R) in complex emotional behavior is emerging, such as overactivation of the OX1R pathway being associated with panic or anxiety states. Here we characterize a brain-penetrant, selective, and high-affinity OX1R antagonist, compound 56 [N-({3-[(3-ethoxy-6-methylpyridin-2-yl)carbonyl]-3-azabicyclo[4.1.0]hept-4-yl}methyl)-5-(trifluoromethyl)pyrimidin-2-amine]. Ex vivo receptor binding studies demonstrated that, after subcutaneous administration, compound 56 crossed the blood-brain barrier and occupied OX1Rs in the rat brain at lower doses than standard OX1R antagonists GSK-1059865 [5-bromo-N-({1-[(3-fluoro-2-methoxyphenyl)carbonyl]-5-methylpiperidin-2-yl}methyl)pyridin-2-amine], SB-334867 [1-(2-methyl-1,3-benzoxazol-6-yl)-3-(1,5-naphthyridin-4-yl)urea], and SB-408124 [1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea]. Although compound 56 did not alter spontaneous sleep in rats and in wild-type mice, its administration in orexin-2 receptor knockout mice selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. In a rat model of psychological stress induced by cage exchange, the OX1R antagonist prevented the prolongation of sleep onset without affecting sleep duration. In a rat model of panic vulnerability (involving disinhibition of the PeF OX region) to threatening internal state changes (i.e., intravenous sodium lactate infusion), compound 56 attenuated sodium lactate-induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. In conclusion, OX1R antagonism represents a novel therapeutic strategy for the treatment of various psychiatric disorders associated with stress or hyperarousal states.


Asunto(s)
Aminopiridinas/uso terapéutico , Nivel de Alerta/fisiología , Antagonistas de los Receptores de Orexina , Receptores de Orexina/metabolismo , Piperidinas/uso terapéutico , Estrés Psicológico/metabolismo , Estrés Psicológico/prevención & control , Aminopiridinas/metabolismo , Aminopiridinas/farmacología , Animales , Nivel de Alerta/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Hipnóticos y Sedantes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piperidinas/metabolismo , Piperidinas/farmacología , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
16.
J Pharmacol Exp Ther ; 354(3): 471-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26177655

RESUMEN

Dual orexin receptor antagonists have been shown to promote sleep in various species, including humans. Emerging research indicates that selective orexin-2 receptor (OX2R) antagonists may offer specificity and a more adequate sleep profile by preserving normal sleep architecture. Here, we characterized JNJ-42847922 ([5-(4,6-dimethyl-pyrimidin-2-yl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-(2-fluoro-6-[1,2,3]triazol-2-yl-phenyl)-methanone), a high-affinity/potent OX2R antagonist. JNJ-42847922 had an approximate 2-log selectivity ratio versus the human orexin-1 receptor. Ex vivo receptor binding studies demonstrated that JNJ-42847922 quickly occupied OX2R binding sites in the rat brain after oral administration and rapidly cleared from the brain. In rats, single oral administration of JNJ-42847922 (3-30 mg/kg) during the light phase dose dependently reduced the latency to non-rapid eye movement (NREM) sleep and prolonged NREM sleep time in the first 2 hours, whereas REM sleep was minimally affected. The reduced sleep onset and increased sleep duration were maintained upon 7-day repeated dosing (30 mg/kg) with JNJ-42847922, then all sleep parameters returned to baseline levels following discontinuation. Although the compound promoted sleep in wild-type mice, it had no effect in OX2R knockout mice, consistent with a specific OX2R-mediated sleep response. JNJ-42847922 did not increase dopamine release in rat nucleus accumbens or produce place preference in mice after subchronic conditioning, indicating that the compound lacks intrinsic motivational properties in contrast to zolpidem. In a single ascending dose study conducted in healthy subjects, JNJ-42847922 increased somnolence and displayed a favorable pharmacokinetic and safety profile for a sedative/hypnotic, thus emerging as a promising candidate for further clinical development for the treatment of insomnia.


Asunto(s)
Antagonistas de los Receptores de Orexina , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Sueño/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Línea Celular , Cricetulus , Dopamina/metabolismo , Células HEK293 , Humanos , Hipnóticos y Sedantes/farmacología , Masculino , Ratones , Ratones Noqueados , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Fases del Sueño/efectos de los fármacos , Sueño REM/efectos de los fármacos , Zolpidem
17.
Bioorg Med Chem Lett ; 25(16): 3157-63, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26099534

RESUMEN

The optimization efforts that led to a novel series of methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones that are potent rat and human P2X7 antagonists are described. These efforts resulted in the discovery of compounds with good drug-like properties that are capable of high P2X7 receptor occupancy in rat following oral administration, including compounds 7n (P2X7 IC50 = 7.7 nM) and 7u (P2X7 IC50 =7 .7 nM). These compounds are expected to be useful tools for characterizing the effects of P2X7 antagonism in models of depression and epilepsy, and several of the compounds prepared are candidates for effective P2X7 PET tracers.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X/química , Pirazinas/química , Receptores Purinérgicos P2X7/química , Triazoles/química , Animales , Semivida , Humanos , Microsomas/metabolismo , Unión Proteica , Antagonistas del Receptor Purinérgico P2X/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacocinética , Ratas , Receptores Purinérgicos P2X7/metabolismo , Relación Estructura-Actividad
18.
J Pharmacol Exp Ther ; 351(3): 628-41, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25271258

RESUMEN

In the central nervous system, the ATP-gated Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is expressed in glial cells and modulates neurophysiology via release of gliotransmitters, including the proinflammatory cytokine interleukin (IL)-1ß. In this study, we characterized JNJ-42253432 [2-methyl-N-([1-(4-phenylpiperazin-1-yl)cyclohexyl]methyl)-1,2,3,4-tetrahydroisoquinoline-5-carboxamide] as a centrally permeable (brain-to-plasma ratio of 1), high-affinity P2X7 antagonist with desirable pharmacokinetic and pharmacodynamic properties for in vivo testing in rodents. JNJ-42253432 is a high-affinity antagonist for the rat (pKi 9.1 ± 0.07) and human (pKi 7.9 ± 0.08) P2X7 channel. The compound blocked the ATP-induced current and Bz-ATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium)]-induced release of IL-1ß in a concentration-dependent manner. When dosed in rats, JNJ-42253432 occupied the brain P2X7 channel with an ED50 of 0.3 mg/kg, corresponding to a mean plasma concentration of 42 ng/ml. The compound blocked the release of IL-1ß induced by Bz-ATP in freely moving rat brain. At higher doses/exposure, JNJ-42253432 also increased serotonin levels in the rat brain, which is due to antagonism of the serotonin transporter (SERT) resulting in an ED50 of 10 mg/kg for SERT occupancy. JNJ-42253432 reduced electroencephalography spectral power in the α-1 band in a dose-dependent manner; the compound also attenuated amphetamine-induced hyperactivity. JNJ-42253432 significantly increased both overall social interaction and social preference, an effect that was independent of stress induced by foot-shock. Surprisingly, there was no effect of the compound on either neuropathic pain or inflammatory pain behaviors. In summary, in this study, we characterize JNJ-42253432 as a novel brain-penetrant P2X7 antagonist with high affinity and selectivity for the P2X7 channel.


Asunto(s)
Fármacos del Sistema Nervioso Central/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Piperazinas/metabolismo , Piperazinas/farmacología , Antagonistas del Receptor Purinérgico P2X/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Animales Recién Nacidos , Fármacos del Sistema Nervioso Central/uso terapéutico , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/uso terapéutico , Masculino , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Piperazinas/uso terapéutico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Ratas , Ratas Sprague-Dawley
19.
Mol Cell Proteomics ; 11(11): 1365-77, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915823

RESUMEN

After their formation at the cell surface, phagosomes become fully functional through a complex maturation process involving sequential interactions with various intracellular organelles. In the last decade, series of data indicated that some of the phagosome functional properties occur in specialized membrane microdomains. The molecules associated with membrane microdomains, as well as the organization of these structures during phagolysosome biogenesis are largely unknown. In this study, we combined proteomics and bioinformatics analyses to characterize the dynamic association of proteins to maturing phagosomes. Our data indicate that groups of proteins shuffle from detergent-soluble to detergent-resistant membrane microdomains during maturation, supporting a model in which the modulation of the phagosome functional properties involves an important reorganization of the phagosome proteome by the coordinated spatial segregation of proteins.


Asunto(s)
Evolución Molecular , Lisosomas/metabolismo , Microdominios de Membrana/metabolismo , Fagosomas/metabolismo , Proteómica/métodos , Animales , Línea Celular , Detergentes/farmacología , Lisosomas/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Ratones , Péptidos/metabolismo , Fagosomas/efectos de los fármacos , Proteoma/metabolismo , Reproducibilidad de los Resultados , Homología de Secuencia de Aminoácido , Factores de Tiempo
20.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470227

RESUMEN

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Asunto(s)
Encéfalo , Hidantoínas , Humanos , Oligodendroglía/metabolismo , Diseño de Fármacos , Hidantoínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA