Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 21(4): 1466-1481, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30838733

RESUMEN

Thousands of semi-volatile hydrophobic organic pollutants (OPs) reach open oceans through atmospheric deposition, causing a chronic and ubiquitous pollution by anthropogenic dissolved organic carbon (ADOC). Hydrophobic ADOC accumulates in cellular lipids, inducing harmful effects on marine biota, and can be partially prone to microbial degradation. Unfortunately, their possible effects on microorganisms, key drivers of global biogeochemical cycles, remain unknown. We challenged coastal microbial communities from Ny-Ålesund (Arctic) and Livingston Island (Antarctica) with ADOC concentrations within the range of oceanic concentrations in 24 h. ADOC addition elicited clear transcriptional responses in multiple microbial heterotrophic metabolisms in ubiquitous groups such as Flavobacteriia, Gammaproteobacteria and SAR11. Importantly, a suite of cellular adaptations and detoxifying mechanisms, including remodelling of membrane lipids and transporters, was detected. ADOC exposure also changed the composition of microbial communities, through stimulation of rare biosphere taxa. Many of these taxa belong to recognized OPs degraders. This work shows that ADOC at environmentally relevant concentrations substantially influences marine microbial communities. Given that emissions of organic pollutants are growing during the Anthropocene, the results shown here suggest an increasing influence of ADOC on the structure of microbial communities and the biogeochemical cycles regulated by marine microbes.


Asunto(s)
Carbono/farmacología , Microbiota/efectos de los fármacos , Agua de Mar/química , Agua de Mar/microbiología , Regiones Antárticas , Regiones Árticas , Contaminantes Ambientales/farmacología , Océanos y Mares
2.
Environ Sci Technol ; 53(15): 8872-8882, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31298532

RESUMEN

Many legacy and emerging persistent organic pollutants (POPs) have been reported in polar regions, and act as sentinels of global pollution. Maritime Antarctica is recipient of abundant snow precipitation. Snow scavenges air pollutants, and after snow melting, it can induce an unquantified and poorly understood amplification of concentrations of POPs. Air, snow, the fugacity in soils and snow, seawater and plankton were sampled concurrently from late spring to late summer at Livingston Island (Antarctica). Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) concentrations in snow and air were close to equilibrium. POPs in soils showed concentrations close to soil-air equilibrium or net volatilization depending on chemical volatility. Seawater-air fugacity ratios were highly correlated with the product of the snow-air partition coefficient and the Henry's law constant (KSA H'), a measure of snow amplification of fugacity. Therefore, coastal seawater mirrored the PCB congener profile and increased concentrations in snowmelt due to snowpack releasing POPs to seawater. The influence of snowpack and glacier inputs was further evidenced by the correlation between net volatilization fluxes of PCBs and seawater salinity. A meta-analysis of KSA, estimated as the ratio of POP concentrations in snow and air from previously reported simultaneous field measurements, showed that snow amplification is relevant for diverse families of POPs, independent of their volatility. We claim that the potential impact of atmospheric pollution on aquatic ecosystems has been under-predicted by only considering air-water partitioning, as snow amplification influences, and may even control, the POP occurrence in cold environments.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Bifenilos Policlorados , Regiones Antárticas , Ecosistema , Monitoreo del Ambiente , Islas , Nieve
3.
Environ Sci Technol ; 52(21): 12327-12337, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30277758

RESUMEN

The atmosphere-land-ocean dynamics of semivolatile organic compounds in polar regions is poorly understood, also for the abundant and ubiquitous polycyclic aromatic hydrocarbons (PAHs). We report the concentrations and fluxes of PAHs in a polar coastal ecosystem (Livingston Island, Antarctica). From late spring (December 2014) to late summer (February 2015), we sampled air, snow, coastal seawater, plankton, and the fugacity in soils and snow. The concentrations of PAHs in seawater were low but increased during the austral summer. The PAH concentrations in snow were significantly higher than in coastal seawater. Soil-air fugacity ratios showed a net volatilization of PAH when soils were covered with lichens, and close to air-soil equilibrium for bare soils. Concentrations in surface snow were also close to equilibrium with atmospheric PAHs. Conversely, there was a net diffusive deposition of PAHs to coastal seawater during late spring, but a net volatilization from seawater during late summer. Volatilization fluxes were correlated with seawater temperature and salinity, consistent with a key role of snowmelt to the fluxes and dissolved phase concentrations during the austral summer. The comprehensive assessment provided here shows that the fugacity amplification in snow is transferred to soils and coastal seawater supporting PAH concentrations and fluxes.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Regiones Antárticas , Ecosistema , Monitoreo del Ambiente , Islas , Nieve
4.
Environ Sci Technol ; 51(15): 8460-8470, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28665121

RESUMEN

Perfluoroalkyl substances (PFAS) are ubiquitous in the environment, including remote polar regions. To evaluate the role of snow deposition as an input of PFAS to Maritime Antarctica, fresh snow deposition, surface snow, streams from melted snow, coastal seawater, and plankton samples were collected over a three-month period (December 2014-February 2015) at Livingston Island. Local sources of PFASs were significant for perfluoroalkyl sulfonates (PFSAs) and C7-14 perfluoroalkyl carboxylates (PFCAs) in snow but limited to the transited areas of the research station. The concentrations of 14 ionizable PFAS (∑PFAS) in freshly deposited snow (760-3600 pg L-1) were 1 order of magnitude higher than those in background surface snow (82-430 pg L-1). ∑PFAS ranged from 94 to 420 pg L-1 in seawater and from 3.1 to 16 ng gdw-1 in plankton. Ratios of individual PFAS concentrations in freshly deposited snow relative to surface snow (CSD/CSnow), snowmelt (CSD/CSM), and seawater (CSD/CSW) were close to 1 (from 0.44 to 1.4) for all perfluorooctanesulfonate (PFOS) isomers, suggesting that snowfall does not contribute significantly to PFOS in seawater. Conversely, these ratios for PFCAs ranged from 1 to 33 and were positively correlated with the number of carbons in the PFCA alkylated chain. These trends suggest that snow deposition, scavenging sea-salt aerosol bound PFAS, plays a role as a significant input of PFCAs to the Maritime Antarctica.


Asunto(s)
Fluorocarburos/análisis , Nieve/química , Aerosoles , Alcanosulfonatos , Regiones Antárticas , Monitoreo del Ambiente , Islas , Agua de Mar
5.
Environ Sci Technol ; 51(5): 2766-2775, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28192988

RESUMEN

The bioaccumulation of perfluoroalkylated substances (PFASs) in plankton has previously been evaluated only in freshwater and regional seas, but not for the large oligotrophic global oceans. Plankton samples from the tropical and subtropical Pacific, Atlantic and Indian Oceans were collected during the Malaspina 2010 circumnavigation expedition, and analyzed for 14 ionizable PFASs, including perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and their respective linear and branched isomers. PFOA and PFOS concentrations in plankton ranged from 0.1 to 43 ng gdw-1 and from 0.5 to 6.7 ng gdw-1, respectively. The relative abundance of branched PFOA in the northern hemisphere was correlated with distance to North America, consistent with the historical production and coherent with previously reported patterns in seawater. The plankton samples showing the highest PFOS concentrations also presented the largest relative abundances of branched PFOS, suggesting a selective cycling/fractionation of branched PFOS in the surface ocean mediated by plankton. Bioaccumulation factors (BAFs) for plankton were calculated for six PFASs, including short chain PFASs. PFASs Log BAFs (wet weight) ranged from 2.6 ± 0.8 for perfluorohexanesulfonic acid (PFHxS), to 4.4 ± 0.6 for perfluoroheptanoic acid (PFHpA). The vertical transport of PFASs due to the settling of organic matter bound PFAS (biological pump) was estimated from an organic matter settling fluxes climatology and the PFAS concentrations in plankton. The global average sinking fluxes were 0.8 ± 1.3 ng m-2d-1 for PFOA, and 1.1 ± 2.1 ng m-2d-1 for PFOS. The residence times of PFAS in the surface ocean, assuming the biological pump as the unique sink, showed a wide range of variability, from few years to millennia, depending on the sampling site and individual compound. Further process-based studies are needed to constrain the oceanic sink of PFAS.


Asunto(s)
Plancton/metabolismo , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos , Fluorocarburos , Agua Dulce , Océano Índico , Agua de Mar
6.
Environ Sci Technol ; 50(23): 12831-12839, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27775328

RESUMEN

Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers and have been detected ubiquitously in the remote atmosphere. Fourteen OPEs were analyzed in 115 aerosol phase samples collected from the tropical and subtropical Atlantic, Pacific, and Indian Oceans during the MALASPINA circumnavigation campaign. OPEs were detected in all samples with concentrations ranging from 360 to 4400 pg m-3 for the sum of compounds. No clear concentration trends were found between the Northern and Southern hemispheres. The pattern was generally dominated by tris(1-chloro-2-propyl) phosphate (TCPP), although tri-n-butyl phosphate (TnBP) had a predominant role in samples close to continents and in those influenced by air masses originating in continents. The dry deposition fluxes of aerosol phase ∑14OPE ranged from 4 to 140 ng m-2 d-1. An estimation of the OPE gas phase concentration and gross absorption fluxes by using three different sets of physical chemical properties suggested that the atmosphere-ocean diffusive exchange of OPEs could be 2-3 orders of magnitude larger than dry deposition. The associated organic phosphorus inputs coming from diffusive OPE fluxes were estimated to potentially trigger up to 1.0% of the reported primary production in the most oligotrophic oceanic regions. However, the uncertainty associated with these calculations is high and mostly driven by the uncertainty of the physical chemical properties of OPEs. Further constraints of the physical chemical properties and fluxes of OPEs are urgently needed, in order to estimate their environmental fate and relevance as a diffusive source of new organic phosphorus to the ocean.


Asunto(s)
Retardadores de Llama , Plastificantes , Atmósfera/química , Monitoreo del Ambiente , Organofosfatos
7.
Environ Sci Process Impacts ; 21(11): 1957-1969, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31393489

RESUMEN

The ubiquitous occurrence of perfluoroalkyl substances (PFAS) in the open ocean has been previously documented, but their vertical transport and oceanic sinks have not been comprehensively characterized and quantified at the oceanic scale. During the Malaspina 2010 circumnavigation expedition, 21 PFAS were measured at the surface and at the deep chlorophyll maximum (DCM) in the Atlantic, Indian and Pacific oceans. In this work, we report an extended data set of PFAS dissolved phase concentrations at the DCM. ∑PFAS at the DCM varied from 130 to 11 000 pg L-1, with a global average value of 500 pg L-1. Perfluorooctanesulfonate (PFOS) abundance contributed 39% of ∑PFAS, followed by perfluorodecanoate (PFDA, 17%), and perfluorohexanoate (PFHxA, 12%). The relative contribution of the remaining compounds was below 10%, with perfluorooctanoate (PFOA) contributing only 5% to PFAS measured at the DCM. Estimates of vertical diffusivity, derived from microstructure turbulence observations in the upper (<300 m) water column, allowed the derivation of PFAS eddy diffusive fluxes from concurrent field measurements of eddy diffusivity and PFAS concentrations. The PFAS concentrations at the DCM predicted from an eddy diffusivity model were lower than field-measured concentrations, suggesting a relevant role of other vertical transport mechanisms. Settling fluxes of organic matter bound PFAS (biological pump), oceanic circulation and potential, yet un-reported, biological transformations are discussed.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Monitoreo del Ambiente/métodos , Fluorocarburos/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/química , Caprilatos/química , Fenómenos Químicos , Fluorocarburos/química , Océanos y Mares , Contaminantes Químicos del Agua/química
8.
Sci Total Environ ; 636: 1109-1116, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29913573

RESUMEN

Soils are a major reservoir of semivolatile organic pollutants such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), and exert a control on their atmospheric occurrence. We present here an assessment of the atmospheric occurrence and seasonality of soil/snow-air partitioning and exchange of PCBs, PAHs, hexachlorobenzene (HCB), and hexachlorocyclohexanes (HCHs) in the arctic city Tromsø, northern Norway. The fugacities of the organic pollutants in soils and snow were determined using a soil fugacity sampler by equilibrating the air concentrations with those in the surface soil/snow. The concentrations in soils did not show a significant seasonality. Conversely, the ambient air concentrations and the soil (or snow) fugacity showed a clear seasonality for PCBs, HCH, HCB and some PAHs, related to temperature. Fugacities in soil/snow were correlated with those in the ambient gas phase, suggesting a close seasonal air-soil/snow coupling. Generally, there was a net deposition or close to equilibrium conditions during the winter, which contrasts with the net volatilization observed during the warmer periods. The chemicals with lower octanol-air partition coefficients showed a larger tendency for being volatilized and thus remobilized from this coastal arctic environment. Conversely, the more hydrophobic compounds were close to air-soil/snow equilibrium or showed a net deposition.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Compuestos Orgánicos Volátiles/análisis , Noruega , Bifenilos Policlorados/análisis , Estaciones del Año , Nieve/química , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA