Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Blood ; 143(13): 1218-1230, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38170175

RESUMEN

ABSTRACT: Targeted protein degradation (TPD) is a revolutionary approach to targeted therapy in hematological malignancies that potentially circumvents many constraints of existing small-molecule inhibitors. Heterobifunctional proteolysis-targeting chimeras (PROTACs) are the leading TPD drug class, with numerous agents now in clinical trials for a range of blood cancers. PROTACs harness the cell-intrinsic protein recycling infrastructure, the ubiquitin-proteasome system, to completely degrade target proteins. Distinct from targeted small-molecule inhibitor therapies, PROTACs can eliminate critical but conventionally "undruggable" targets, overcome resistance mechanisms to small-molecule therapies, and can improve tissue specificity and off-target toxicity. Orally bioavailable, PROTACs are not dependent on the occupancy-driven pharmacology inherent to inhibitory therapeutics, facilitating substoichiometric dosing that does not require an active or allosteric target binding site. Preliminary clinical data demonstrate promising therapeutic activity in heavily pretreated populations and novel technology platforms are poised to exploit a myriad of permutations of PROTAC molecular design to enhance efficacy and targeting specificity. As the field rapidly progresses and various non-PROTAC TPD drug candidates emerge, this review explores the scientific and preclinical foundations of PROTACs and presents them within common clinical contexts. Additionally, we examine the latest findings from ongoing active PROTAC clinical trials.


Asunto(s)
Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/tratamiento farmacológico , Proteolisis , Sitio Alostérico , Citoplasma , Sistemas de Liberación de Medicamentos , Complejo de la Endopetidasa Proteasomal , Ubiquitina-Proteína Ligasas
2.
Nat Struct Mol Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951623

RESUMEN

The development of precise RNA-editing tools is essential for the advancement of RNA therapeutics. CRISPR (clustered regularly interspaced short palindromic repeats) PspCas13b is a programmable RNA nuclease predicted to offer superior specificity because of its 30-nucleotide spacer sequence. However, its design principles and its on-target, off-target and collateral activities remain poorly characterized. Here, we present single-base tiled screening and computational analyses that identify key design principles for potent and highly selective RNA recognition and cleavage in human cells. We show that the de novo design of spacers containing guanosine bases at precise positions can greatly enhance the catalytic activity of inefficient CRISPR RNAs (crRNAs). These validated design principles (integrated into an online tool, https://cas13target.azurewebsites.net/ ) can predict highly effective crRNAs with ~90% accuracy. Furthermore, the comprehensive spacer-target mutagenesis revealed that PspCas13b can tolerate only up to four mismatches and requires ~26-nucleotide base pairing with the target to activate its nuclease domains, highlighting its superior specificity compared to other RNA or DNA interference tools. On the basis of this targeting resolution, we predict an extremely low probability of PspCas13b having off-target effects on other cellular transcripts. Proteomic analysis validated this prediction and showed that, unlike other Cas13 orthologs, PspCas13b exhibits potent on-target activity and lacks collateral effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA