Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834003

RESUMEN

The NOTCH ligands JAG1 and JAG2 have been correlated in vitro with multiple myeloma (MM) cell proliferation, drug resistance, self-renewal and a pathological crosstalk with the tumor microenvironment resulting in angiogenesis and osteoclastogenesis. These findings suggest that a therapeutic approach targeting JAG ligands might be helpful for the care of MM patients and lead us to explore the role of JAG1 and JAG2 in a MM in vivo model and primary patient samples. JAG1 and JAG2 protein expression represents a common feature in MM cell lines; therefore, we assessed their function through JAG1/2 conditional silencing in a MM xenograft model. We observed that JAG1 and JAG2 showed potential as therapeutic targets in MM, as their silencing resulted in a reduction in the tumor burden. Moreover, JAG1 and JAG2 protein expression in MM patients was positively correlated with the presence of MM cells in patients' bone marrow biopsies. Finally, taking advantage of the Multiple Myeloma Research Foundation (MMRF) CoMMpass global dataset, we showed that JAG2 gene expression level was a predictive biomarker associated with patients' overall survival and progression-free survival, independently from other main molecular or clinical features. Overall, these results strengthened the rationale for the development of a JAG1/2-tailored approach and the use of JAG2 as a predictive biomarker in MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Biomarcadores , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ligandos , Microambiente Tumoral
2.
Haematologica ; 107(9): 2183-2194, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35263984

RESUMEN

Multiple myeloma (MM) is an incurable hematologic neoplasm, whose poor prognosis is deeply affected by the propensity of tumor cells to localize in the bone marrow (BM) and induce the protumorigenic activity of normal BM cells, leading to events associated with tumor progression, including tumor angiogenesis, osteoclastogenesis, and the spread of osteolytic bone lesions. The interplay between MM cells and the BM niche does not only rely on direct cell-cell interaction, but a crucial role is also played by MM-derived extracellular vesicles (MM-EV). Here, we demonstrated that the oncogenic NOTCH receptors are part of MM-EV cargo and play a key role in EV protumorigenic ability. We used in vitro and in vivo models to investigate the role of EV-derived NOTCH2 in stimulating the protumorigenic behavior of endothelial cells and osteoclast progenitors. Importantly, MM-EV can transfer NOTCH2 between distant cells and increase NOTCH signaling in target cells. MM-EV stimulation increases endothelial cell angiogenic ability and osteoclast differentiation in a NOTCH2-dependent way. Indeed, interfering with NOTCH2 expression in MM cells may decrease the amount of NOTCH2 also in MM-EV and affect their angiogenic and osteoclastogenic potential. Finally, we demonstrated that the pharmacologic blockade of NOTCH activation by γ-secretase inhibitors may hamper the biological effect of EV derived by MM cell lines and by the BM of MM patients. These results provide the first evidence that targeting the NOTCH pathway may be a valid therapeutic strategy to hamper the protumorigenic role of EV in MM as well as other tumors.


Asunto(s)
Vesículas Extracelulares , Mieloma Múltiple , Médula Ósea/patología , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Mieloma Múltiple/patología , Microambiente Tumoral
3.
J Anat ; 236(2): 305-316, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31820452

RESUMEN

The 'fate' of growth plate hypertrophic chondrocytes has been long debated with two opposing theories: cell apoptosis or survival with transformation into osteogenic cells. This study was carried out on the proximal tibial growth plate of rabbits using light microscopy, scanning and transmission electron microscopy. We focused particularly on the orientation of the specimens included in order to define the mineral deposition and the vascular invasion lines and obtain histological and ultrastructural images at the corresponding height of the plate. Chondrocyte morphology transformation through the maturation process (characterized by vesicles and then large cytoplasmic lacunae before condensation, fragmentation and disappearance of the nuclear chromatin) did not correspond to that observed in the 'in vitro' apoptosis models. These findings rather suggested the passage of free water from the cartilage matrix into a still live cell (swelling). The level of these changes suggested a close relationship with the mineral deposition line. Furthermore, the study provided evidence that the metaphyseal capillaries could advance inside the columns of stacked hypertrophic chondrocytes (delimited by the intercolumnar septa) without the need for calcified matrix resorption because the thin transverse septa between the stacked chondrocyte (below the mineral deposition line) were not calcified. The zonal distribution of cell types (hypertrophic chondrocytes, osteoblasts, osteoclasts and macrophages) did not reveal osteoclasts or chondroclasts at this level. Morphological and morphometric analysis recorded globular masses of an amorphous, necrotic material in a zone 0-70 µm below the vascular invasion line occasionally surrounded by a membrane (indicated as 'hypertrophic chondrocyte ghosts'). These masses and the same material not bound by a membrane were surrounded by a large number of macrophages and other blood cell precursors, suggesting this could be the cause of macrophage recall and activation. The most recent hypotheses based on genetic and lineage tracing studies stating that hypertrophic chondrocytes can survive and transform into osteoblasts and osteocytes (trans-differentiation) were not confirmed by the ultrastructural morphology or by the zonal comparative counting and distribution of cell types below the vascular invasion line.


Asunto(s)
Condrocitos/citología , Osteoblastos/citología , Osteocitos/citología , Osteogénesis/fisiología , Animales , Apoptosis/fisiología , Proliferación Celular/fisiología , Masculino , Conejos
4.
Eur J Nutr ; 59(5): 1975-1987, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31280345

RESUMEN

PURPOSE: Natural antioxidants are considered as promising compounds in the prevention/treatment of osteoporosis. We studied the ability of purified δ-tocotrienol (δ-TT) isolated from a commercial palm oil (Elaeis guineensis) fraction to protect osteoblast MC3T3-E1 and osteocyte MLO-Y4 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage and the mechanisms involved in its protective action in MC3T3-E1. METHODS: MC3T3-E1 and MLO-Y4 cells were treated with δ-TT (1.25-20 µg/ml for 2 h) followed by t-BHP at 250 µM or 125 µM for 3 h, respectively. MTT test was used to measure cell viability. Apoptotic cells were stained with Hoechst-33258 dye. Intracellular ROS levels were measured by dichlorofluorescein CM-DCFA. The OPT fluorimetric assay was used to detect the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents. RESULTS: δ-TT significantly prevented the effects of t-BHP on cell viability and apoptosis reaching a maximum protective activity at 10 and 5 µg/ml in MC3T3-E1 and MLO-Y4 cells, respectively. This protective effect was due to a reduction of intracellular ROS levels and an increase in the defense systems shown by the increase in the GSH/GSSG. GSH loss induced by an inhibitor of GSH synthesis significantly reduced the δ-TT-positive effect on ROS levels. δ-TT prevention of oxidative damage was completely removed by combined treatment with the specific inhibitors of PI3K/AKT (LY294002) and Nrf2 (ML385). CONCLUSIONS: The δ-TT protective effect against oxidative damage in MC3T3-E1 cells is due to a reduction of intracellular ROS levels and an increase of the GSH/GSSG ratio, and involves an interaction between the PI3K/Akt-Nrf2 signaling pathways.


Asunto(s)
Osteoblastos/efectos de los fármacos , Estrés Oxidativo , Vitamina E , Células 3T3 , Animales , Antioxidantes/farmacología , Apoptosis , Ratones , Factor 2 Relacionado con NF-E2 , Proteína Oncogénica v-akt , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno , Vitamina E/análogos & derivados , Vitamina E/farmacología
6.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629979

RESUMEN

Bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, indicating that stimulation of osteoblast migration could be a promising osteoanabolic strategy. We showed that purified δ-tocotrienol (δ-TT, 10 µg/mL), isolated from commercial palm oil (Elaeis guineensis) fraction, stimulates the migration of both MC3T3-E1 osteoblast-like cells and primary human bone marrow mesenchymal stem cells (BMSC) as detected by wound healing assay or Boyden chamber assay respectively. The ability of δ-TT to promote MC3T3-E1 cells migration is dependent on Akt phosphorylation detected by Western blotting and involves Wnt/ß-catenin signalling pathway activation. In fact, δ-TT increased ß-catenin transcriptional activity, measured using a Nano luciferase assay and pretreatment with procaine (2 µM), an inhibitor of the Wnt/ß-catenin signalling pathway, reducing the wound healing activity of δ-TT on MC3T3-E1 cells. Moreover, δ-TT treatment increased the expression of ß-catenin specific target genes, such as Osteocalcin and Bone Morphogenetic Protein-2, involved in osteoblast differentiation and migration, and increased alkaline phosphatase and collagen content, osteoblast differentiation markers. The ability of δ-TT to enhance the recruitment of BMSC, and to promote MC3T3-E1 differentiation and migratory behavior, indicates that δ-TT could be considered a promising natural anabolic compound.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Vitamina E/análogos & derivados , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Evaluación Preclínica de Medicamentos , Histona Acetiltransferasas/metabolismo , Ratones , Activación Transcripcional/efectos de los fármacos , Vitamina E/farmacología , beta Catenina/metabolismo
7.
Eur J Nutr ; 58(3): 1019-1032, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29372310

RESUMEN

PURPOSE: Increasing evidence suggests the potential use of natural antioxidant compounds in the prevention/treatment of osteoporosis. This study was undertaken to investigate the effects of purified delphinidin-3-rutinoside (D3R), isolated from Solanum melongena L., on osteoblast viability and differentiation in basal conditions and its ability to protect MC3T3-E1 cells against oxidative damage induced by tert-butyl hydroperoxide (t-BHP). METHODS: MC3T3-E1 osteoblastic cells were treated with D3R (10-11-10-5 M for 24 h), followed by treatment with t-BHP (250 µM for 3 h). To test cell viability, MTT test was performed. Apoptotic cells were stained with Hoechst-33258 dye. Cytoskeleton rearrangement was stained with FICT-labelled phalloidin. Intracellular ROS production was measured using dichlorofluorescein CM-DCFA. The reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents was measured according to the OPT fluorimetric assay. RESULTS: D3R (10-9 M) significantly increases viability of MC3T3-E1 cells and promotes osteoblast differentiation by increasing the expression of type I collagen, alkaline phosphatase and osteocalcin. Pre-treatment with D3R (10-9 M) significantly prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization by decreasing intracellular ROS and preventing the reduction in GSH/GSSG. D3R did not significantly modify the expression of Osteoprotegerin/RANKL system activated by t-BHP suggesting a lack of effect of D3R on osteoblast/osteoclast crosstalk. D3R protective effects against t-BHP-induced osteoblastic dysfunction were mediated by the PI3K/Akt pathway since they were completely prevented by LY294002, a PI3K/Akt specific inhibitor. CONCLUSIONS: These findings indicate that D3R protects MC3T3-E1 cells from oxidative damage and suggest the potential utility of dietary D3R supplement to prevent osteoblast dysfunction in age-related osteoporosis.


Asunto(s)
Antocianinas/farmacología , Antioxidantes/farmacología , Osteoblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Solanum melongena , Animales , Línea Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Ratones
8.
Int J Cancer ; 142(5): 874-882, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28836271

RESUMEN

The interaction between the (epi)genetic makeup of an individual and his/her environmental exposure record (exposome) is accepted as a determinant factor for a significant proportion of human malignancies. Recent evidence has highlighted the key role of epigenetic mechanisms in mediating gene-environment interactions and translating exposures into tumorigenesis. There is also growing evidence that epigenetic changes may be risk factor-specific ("fingerprints") that should prove instrumental in the discovery of new biomarkers in cancer. Here, we review the state of the science of epigenetics associated with environmental stimuli and cancer risk, highlighting key developments in the field. Critical knowledge gaps and research needs are discussed and advances in epigenomics that may help in understanding the functional relevance of epigenetic alterations. Key elements required for causality inferences linking epigenetic changes to exposure and cancer are discussed and how these alterations can be incorporated in carcinogen evaluation and in understanding mechanisms underlying epigenome deregulation by the environment.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Epigénesis Genética , Epigenómica , Interacción Gen-Ambiente , Neoplasias/etiología , Animales , Metilación de ADN , Humanos , Neoplasias/patología , Factores de Riesgo
9.
J Anat ; 233(6): 828-842, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30368800

RESUMEN

Whether the 1st segment of the human autopod 1st ray is a 'true' metapodial with loss of the proximal or mid phalanx or the original basal phalanx with loss of the metacarpal has been a long-lasting discussion. The actual knowledge of the developmental pattern of upper autopod segments at a fetal age of 20-22 weeks, combined with X-ray morphometry of normal long bones of the hand in the growing ages, was used for analysis of the parameters, percentage length, position of epiphyseal ossification centers and proximal/distal growth rate. The symmetric growth pattern in the fetal anlagen changed to unidirectional in the postnatal development in relation to epiphyseal ossification formation. The percentage length assessment, the distribution of the epiphyseal ossification centers, and differential proximal/distal growth rate among the growing hand segments supported homology of most proximal segment of the thumb with the 2nd-5th proximal phalanges and that of the proximal phalanx of the thumb with the 2nd-5th mid phalanges in the same hand. Published case reports of either metanalysis of 'triphalangeal thumb' and 'proximal/distal epiphyseal ossification centers' were used to support the applied morphometric methodology; in particular, the latter did not give evidence of growth pattern inversion of the proximal segment of the thumb. The presented data support the hypothesis that during evolution, the lost segment of the autopod 1st ray is the metacarpal.


Asunto(s)
Mano/embriología , Mano/crecimiento & desarrollo , Huesos del Metacarpo/embriología , Huesos del Metacarpo/crecimiento & desarrollo , Adolescente , Niño , Preescolar , Humanos , Lactante
10.
Amino Acids ; 46(7): 1715-25, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24705647

RESUMEN

Increasing evidence suggests a role for oxidative stress in age-related decrease in osteoblast number and function leading to the development of osteoporosis. This study was undertaken to investigate whether ghrelin, previously reported to stimulate osteoblast proliferation, counteracts tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in MC3T3-E1 osteoblastic cells as well as to characterize the ghrelin receptor (GHS-R) involved in such activity. Pretreatment with ghrelin (10(-7)-10(-11)M) significantly increased viability and reduced apoptosis of MC3T3-E1 cells cultured with t-BHP (250 µM) for three hours at the low concentration of 10(-9)M as shown by MTT assay and Hoechst-33258 staining. Furthermore, ghrelin prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization evidenced by the staining of the actin fibers with Phalloidin-FITC by reducing reactive oxygen species generation. The GHS-R type 1a agonist, EP1572 (10(-7)-10(-11)M), had no effect against t-BHP-induced cytotoxicity and pretreatment with the selective GHS-R1a antagonist, D-Lys(3)-GHRP-6 (10(-7)M), failed to remove ghrelin (10(-9) M)-protective effects against oxidative injury, indicating that GHS-R1a is not involved in such ghrelin activity. Accordingly, unacylated ghrelin (DAG), not binding GHS-R1a, displays the same protective actions of ghrelin against t-BHP-induced cytotoxicity. Preliminary observations indicate that ghrelin increased the trimethylation of lys4 on histones H3, a known epigenetic mark activator, which may regulate the expression of some genes limiting oxidative damage. In conclusion, our data demonstrate that ghrelin and DAG promote survival of MC3T3-E1 cell exposed to t-BHP-induced oxidative damage. Such effect is independent of GHS-R1a and is likely mediated by a common ghrelin/DAG binding site.


Asunto(s)
Ghrelina/farmacología , Osteoblastos/efectos de los fármacos , Receptores de Ghrelina/metabolismo , terc-Butilhidroperóxido/toxicidad , Citoesqueleto de Actina/efectos de los fármacos , Acilación , Animales , Apoptosis/efectos de los fármacos , Línea Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Epigénesis Genética , Ghrelina/metabolismo , Histonas/metabolismo , Indoles , Ratones , Oligopéptidos/farmacología , Osteoblastos/metabolismo , Osteoblastos/patología , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Triptófano/análogos & derivados
11.
Environ Toxicol ; 29(8): 856-66, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22987612

RESUMEN

Perinatal polychlorinated biphenyl (PCB) exposures still remain a serious health concern because offspring receive PCB burden from mother during vulnerable processes of development. Since cytochrome P450 (CYP) represents a toxicological endpoint, in the present study, representing an extended investigation of a previous multitasked one, we explored the long-term responsiveness of CYP1A and CYP2B isoforms by Western blot analysis in liver and whole brain of lactating (PN12), weaning (PN21), and adult offspring (PN60) rats prenatally and lactationally exposed to a reconstituted PCB mixture (RM) of noncoplanar PCB138, 153, 180, and coplanar PCB126 congeners. We chose highly chlorinated PCBs instead of lower chlorinated one, because their recalcitrance to biotransformation makes easy their accumulation/persistence in tissues and breast milk. Dioxin-like congener PCB126 binding aryl hydrocarbon receptor (AHR) is responsible of many toxic effects. Pregnant Sprague-Dawley dams with high affinity AHR received subcutaneous injection of RM (10 mg/kg body weight) daily during gestation (days 15-19) and twice a week during breast-feeding. The results evidenced a transfer of PCBs to neonates through milk and a significant responsiveness of hepatic CYP in both mothers and offspring. In liver of exposed progeny, CYP isoforms exhibited a significant increment at PN12 (70% over control) and at PN21 (270% over control). Contrary to dams, in adult PCB offspring CYP levels showed a decline up to values similar to those of control. This transient developmental responsiveness of CYP isoforms in offspring liver reflects roughly the time course of hepatic PCB levels previously reported. Even if congeners were detected in brain, we failed in evidencing a responsiveness of CYP isoforms probably because of region-specific CYP expression in this organ. In conclusion, induction of offspring hepatic CYP is index of liver PCB burden, and despite the insensitivity of whole brain CYP we cannot exclude brain vulnerability toward PCB. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 856-866, 2014.


Asunto(s)
Encéfalo/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Contaminantes Ambientales/toxicidad , Lactancia/metabolismo , Hígado/metabolismo , Bifenilos Policlorados/toxicidad , Animales , Animales Recién Nacidos , Citocromo P-450 CYP1A1/metabolismo , Contaminantes Ambientales/metabolismo , Femenino , Isoenzimas/metabolismo , Masculino , Exposición Materna , Leche/metabolismo , Oxidación-Reducción , Bifenilos Policlorados/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/metabolismo , Distribución Tisular
12.
Mar Pollut Bull ; 200: 116061, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290366

RESUMEN

Nanoplastic contamination has become an issue of environmental concern but the information on the potential adverse effects of nanoplastics on marine ecosystems is still limited. Therefore, the aim of this work was to investigate the effects of the exposure to polystyrene nanoplastics (PS-NPs; 0.05, 0.5 and 5 µg/mL) on the brittles star Ophiactis virens. Diverse endpoints at different levels of biological organization were considered, including behavior, arm regeneration capacity and oxidative stress. PS-NPs were observed on the brittle star body surface but not in inner tissues. Accumulation of PS-NPs was observed in the pre-buccal cavity of animals exposed to 5 µg/mL PS-NPs which also displayed delayed righting activity and an oxidative stress condition. Nevertheless, no effect was observed on arm regeneration efficiency at any tested PS-NPs concentration. Overall, our results highlighted that prolonged exposure to high amounts of PS-NPs could interfere at least partially with the physiology of O. virens.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Microplásticos , Ecosistema , Contaminantes Químicos del Agua/toxicidad
13.
Biochem Pharmacol ; 212: 115553, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075816

RESUMEN

Gonadotropin-Releasing Hormone (GnRH) is a decapeptide responsible for the control of the reproductive functions. It shows C- and N-terminal aminoacid modifications and two other distinct isoforms have been so far identified. The biological effects of GnRH are mediated by binding to high-affinity G-protein couple receptors (GnRHR), showing characteristic very short C tail. In mammals, including humans, GnRH-producing neurons originate in the embryonic nasal compartment and during early embryogenesis they undergo rapid migration towards the hypothalamus; the increasing knowledge of such mechanisms improved diagnostic and therapeutic approaches to infertility. The pharmacological use of GnRH, or its synthetic peptide and non-peptide agonists or antagonists, provides a valid tool for reproductive disorders and assisted reproduction technology (ART). The presence of GnRHR in several organs and tissues indicates additional functions of the peptide. The identification of a GnRH/GnRHR system in the human endometrium, ovary, and prostate has extended the functions of the peptide to the physiology and tumor transformation of such tissues. Likely, the activity of a GnRH/GnRHR system at the level of the hippocampus, as well as its decreased expression in mice brain aging, raised interest in its possible involvement in neurogenesis and neuronal functions. In conclusion, GnRH/GnRHR appears to be a fascinating biological system that exerts several possibly integrated pleiotropic actions in the complex control of reproductive functions, tumor growth, neurogenesis, and neuroprotection. This review aims to provide an overview of the physiology of GnRH and the pharmacological applications of its synthetic analogs in the management of reproductive and non-reproductive diseases.


Asunto(s)
Hormona Liberadora de Gonadotropina , Neoplasias , Masculino , Ratones , Femenino , Animales , Humanos , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Reproducción , Ovario/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Mamíferos/metabolismo
14.
Environ Int ; 164: 107264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35489111

RESUMEN

The presence and potential toxicity of nanoplastics (NPs) in aquatic ecosystems is an issue of growing concern. Although many studies have investigated the adverse effects of short-term exposure to high concentrations of NPs to aquatic organisms, the information on the consequences caused by the administration of low NPs concentrations over long-term exposure is limited. The present study aimed at investigating the effects induced by a long-term exposure (21-days) to two sub-lethal concentrations of polystyrene nanoplastics (PS-NPs; 0.05 and 0.5 µg/mL) on Daphnia magna. A multi-level approach was performed to assess potential sub-individual (i.e., molecular and biochemical) and individual (i.e., behavioural) adverse effects. At molecular level, the modulation of the expression of genes involved in antioxidant defence, response to stressful conditions and specific physiological pathways was investigated. Oxidative stress (i.e., the amount of pro-oxidants, the activity of antioxidant and detoxifying enzymes and lipid peroxidation) and energetic (i.e., protein, carbohydrate, lipid and total caloric content) biomarkers were applied to assess effects at the biochemical level, while swimming activity was measured to monitor changes in individual behavior. Although the 21-days exposure to PS-NPs induced a slight modulation of gene involved in oxidative stress response, biochemical analyses showed that D. magna individuals did not experience an oxidative stress condition. Significant changes in energy reserves of individuals exposed for 21 days to both the PS-NPs concentrations were observed, but no alterations of swimming activity occurred. Our results highlighted that the exposure to low concentrations of PS-NPs could pose a limited risk to D. magna individuals and suggested the importance of a multi-level approach to assess the risks of NPs on aquatic organisms.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Daphnia/metabolismo , Ecosistema , Microplásticos/toxicidad , Poliestirenos/análisis , Poliestirenos/química , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/análisis
15.
Front Cell Dev Biol ; 10: 836179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223856

RESUMEN

The impairment of development/migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons is the main cause of Kallmann's syndrome (KS), an inherited disorder characterized by hypogonadism, anosmia, and other developmental defects. Olfactorin is an extracellular matrix protein encoded by the UMODL1 (uromodulin-like 1) gene expressed in the mouse olfactory region along the migratory route of GnRH neurons. It shares a combination of WAP and FNIII repeats, expressed in complementary domains, with anosmin-1, the product of the ANOS1 gene, identified as the causative of KS. In the present study, we have investigated the effects of olfactorin in vitro and in vivo models. The results show that olfactorin exerts an anosmin-1-like strong chemoattractant effect on mouse-immortalized GnRH neurons (GN11 cells) through the activation of the FGFR and MAPK pathways. In silico analysis of olfactorin and anosmin-1 reveals a satisfactory similarity at the N-terminal region for the overall arrangement of corresponding WAP and FNIII domains and marked similarities between WAP domains' binding modes of interaction with the resolved FGFR1-FGF2 complex. Finally, in vivo experiments show that the down-modulation of the zebrafish z-umodl1 gene (orthologous of UMODL1) in both GnRH3:GFP and omp 2k :gap-CFP rw034 transgenic zebrafish strains leads to a clear disorganization and altered fasciculation of the neurites of GnRH3:GFP neurons crossing at the anterior commissure and a significant increase in olfactory CFP + fibers with altered trajectory. Thus, our study shows olfactorin as an additional factor involved in the development of olfactory and GnRH systems and proposes UMODL1 as a gene worthy of diagnostic investigation in KS.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34831936

RESUMEN

Environmental stimuli, including sex hormones and oxidative stress (OS), affect bone balance, modifying the epigenetic profiles of key osteogenic genes. Nonetheless, the interplay between sex steroids, epigenome and OS has yet be fully elucidated. This paper aims to study in vitro the role of sex steroids in OS-induced alteration in bone cells' homeostasis, and to assess the possible contribution of epigenetic modifications. Toward this purpose, osteoblast (MC3T3-E1) and osteocyte (MLOY-4) cell lines were exposed to two different sources of free oxygen radicals, i.e., tert-butyl hydroperoxide and dexamethasone, and the protective effect of pre-treatment with androgens and estrogens was evaluated. In particular, we analyzed parameters that reflect bone cell homeostasis such as cell viability, cell migration, transcriptomic profile, transcriptional activity, and epigenetic signature. Our findings indicate that estrogens and androgens counteract OS effects. Using partially overlapping strategies, they reduce OS outcomes regarding cell viability, cell migration, the transcriptomic profile of gene families involved in bone remodeling, and epigenetic profile, i.e., H3K4me3 level. Additionally, we demonstrated that the protective effect of steroids against OS on bone homeostasis is partially mediated by the Akt pathway. Overall, these results suggest that the hormonal milieu may influence the mechanisms of age-related bone disease.


Asunto(s)
Osteocitos , Estrés Oxidativo , Antioxidantes , Hormonas Esteroides Gonadales , Humanos , Osteoblastos
17.
Microsc Res Tech ; 82(3): 190-198, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30582248

RESUMEN

The patterns of longitudinal and peripheral growth were analyzed in human autopod cartilage anlagen (fetal developmental stage 20th-22nd week) through morphometric assessment of chondrocyte parameter size, shape, alignment and orientation between peripheral and central sectors of the anlage transition zone defined by primary ossification center and the epiphyseal basis. The aim was to correlate the chondrocyte dynamics with the longitudinal and peripheral growth. A further comparison was carried out between the corresponding sectors of the postnatal (3-5 months old) growth plate cartilage documenting: (1) the different chondrocyte framework and the new peripheral mechanism; (2) the opposite direction of fetal periosteal ossification versus the Lacroix bone bark. Measurement of multiple parameters (% lac area, % total matrix area, total lac density and mean single lac area), which characterize the cartilage Anlage growth, suggested the following correlations with chondrocyte duplication rate: (a) slow duplication rate ≈ coupled, intralacunar chondrocytes (in central epiphysis); (b) repeated/frequent cell duplications ≈ clusters (in the basal epiphyseal layer); (c) clusters of chondrocytes before becoming hypertrophic were stacked up on the top of each other (both in the Anlage transition zone or in the columns of metaphyseal growth plate); (d) enhanced osteoclastic resorption of the Lacroix bone bark lower end, extended to the more external metaphyseal trabeculae counterbalancing the discrepancy between the epiphyseal and the diaphyseal circumferential growth.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/embriología , Cartílago/anatomía & histología , Placa de Crecimiento/anatomía & histología , Osteogénesis/fisiología , Feto/anatomía & histología , Humanos
18.
J Steroid Biochem Mol Biol ; 109(3-5): 294-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18403198

RESUMEN

Brain sexual differentiation is a complex developmental phenomenon influenced by the genetic background, sex hormone secretions and environmental inputs, including pollution. The main hormonal drive to masculinize and defeminize the rodent brain is testosterone secreted by the testis. The hormone does not influence sex brain differentiation only in its native configuration, but it mostly needs local conversion into active metabolites (estradiol and DHT) through the action of specific enzymatic systems: the aromatase and 5alpha-reductase (5alpha-R), respectively. This allows the hormone to control target cell gene expression either through the estrogen (ER) or the androgen (AR) receptors. The developmental profile of testosterone metabolizing enzymes, different in the two sexes, is therefore of the utmost importance in affecting the bioavailability of the steroids active in brain differentiation. Widely diffused pollutants, like polychlorinated biphenyls (PCBs) are able to affect the production and/or action of testosterone metabolites, exerting detrimental influences on reproduction and sex behavior. The main studies performed in our and other laboratories concerning the pattern of expression and the control of the enzymatic systems involved in brain androgen action and metabolism are shortly reviewed. Some recent data on the influence exerted by PCBs on these metabolic systems are also reported.


Asunto(s)
Ambiente , Hormonas/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Roedores/metabolismo , Diferenciación Sexual , Animales , Contaminantes Ambientales , Humanos
19.
Peptides ; 103: 1-9, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29526750

RESUMEN

Increasing evidence suggests a role for ghrelin in the control of articular inflammatory diseases like osteoarthritis (OA). In the present study we examined the ability of ghrelin to counteract LPS-induced necrosis and apoptosis of chondrocytes and the involvement of GH secretagogue receptor (GHS-R)1a in the protective action of ghrelin. The effects of ghrelin (10-7-10-11 mol/L) on equine primary cultured chondrocytes viability and necrosis in basal conditions and under LPS treatment (100 ng/ml) were detected by using both acridine orange/propidium iodide staining and annexin-5/propidium iodide staining. The presence of GHS-R1a on chondrocytes was detected by Western Blot. The involvement of the GHS-R1a in the ghrelin effect against LPS-induced cytotoxicity was examined by pretreating chondrocytes with D-Lys3-GHRP-6, a specific GHS-R1a antagonist, and by using des-acyl ghrelin (DAG, 10-7 and 10-9 mol/L) which did not recognize the GHS-R 1a. Low ghrelin concentrations reduced chondrocyte viability whereas 10-7 mol/L ghrelin protects against LPS-induced cellular damage. The protective effect of ghrelin depends on the interaction with the GHS-R1a since it is significantly reduced by D-Lys3-GHRP-6. The negative action of ghrelin involves caspase activation and could be due to an interaction with a GHS-R type different from the GHS-R1a recognized by both low ghrelin concentrations and DAG. DAG, in fact, induces a dose-dependent decrease in chondrocyte viability and exacerbates LPS-induced damage. These data indicate that ghrelin protects chondrocytes against LPS-induced damage via interaction with GHS-R1a and suggest the potential utility of local GHS-R1a agonist administration to treat articular inflammatory diseases such as OA.


Asunto(s)
Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ghrelina/metabolismo , Lipopolisacáridos/toxicidad , Oligopéptidos/farmacología , Osteoartritis/metabolismo , Receptores de Ghrelina/antagonistas & inhibidores , Animales , Células Cultivadas , Caballos , Osteoartritis/inducido químicamente
20.
J Morphol ; 278(7): 884-895, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28386944

RESUMEN

A histological and morphometric analysis of human metacarpal and carpal anlagen between the 16th and 22nd embryonic weeks was carried out with the aim of studying the establishment of the respective anlage architecture. No differences in the pattern of growth were documented between the peripheral and central zones of the metacarpal epiphyses and those of the carpals. The regulation of longitudinal growth in long bone anlagen occurred in the transition zone between the epiphysis and the diaphysis (homologous to the metaphyseal growth plate cartilage in more advanced developmental stage of the bone). Comparative zonal analysis was conducted to assess the chondrocyte density, the mean chondrocyte lacunar area, the paired chondrocyte polarity in the orthogonal longitudinal and transverse planes, and the lacunar shape transformation in the metacarpal. In transition from epiphysis to diaphysis chondrocyte density decreased and mean lacunar area increased. No significant differences in the chondrocyte maturation cycle were observed between proximal/distal metacarpal epiphyses and the carpal anlagen. The number of paired chondrocyte oriented along the growth vector was significantly higher in both proximal/distal transition zones between epiphysis and diaphysis. Human metacarpals shared with experimental models (like mice and nonmammal tetrapods) an early common chondrocyte maturation cycle but with a different timing due to the slower embryonic and fetal developmental rate of human anlagen.


Asunto(s)
Huesos del Carpo/embriología , Cartílago/embriología , Feto/anatomía & histología , Mano/embriología , Huesos del Metacarpo/embriología , Diferenciación Celular , Condrocitos/citología , Condrocitos/ultraestructura , Diáfisis/ultraestructura , Epífisis/ultraestructura , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA