Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 56: 384-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23911793

RESUMEN

On retinal ganglion cells (RGCs) transmit light encoded information to the brain and receive excitatory input from On cone bipolar cells (CBPs). The synaptic CBP input onto On RGCs is mediated by AMPA-type glutamate receptors (AMPARs) that include both those lacking a GluA2 subunit, and are therefore permeable to Ca(2+), and those that possess at least one GluA2 subunit and are Ca(2+)-impermeable. We have previously demonstrated in electrophysiological studies that periods of low synaptic activity, brought about by housing animals in darkness, enhance the proportion of GluA2-lacking AMPARs at the On CBP-On RGC synapse by mobilizing surface GluA2 containing receptors into a receptor pool that rapidly cycles in and out of the membrane. AMPAR cycling induction by reduced synaptic activity takes several hours. This delay suggests that changes in expression of proteins which regulate AMPAR trafficking may mediate the altered mobility of GluA2 AMPARs in RGCs. In this study, we test the hypothesis that AMPAR trafficking proteins couple synaptic activity to AMPAR cycling in RGCs. Immunocytochemical and biochemical analyses confirmed that darkness decreases surface GluA2 in RGCs and changed the expression levels of three proteins associated with GluA2 trafficking. GRIP was decreased, while PICK1 and Arc were increased. Knockdown of GRIP with siRNA elevated constitutive AMPAR cycling, mimicking effects of reduced synaptic activity, while knockdown of PICK1 and Arc blocked increases in constitutive GluA2 trafficking. Our results support a role for correlated, activity-driven changes in multiple AMPAR trafficking proteins that modulate GluA2 cycling which can in turn affect synaptic AMPAR composition in RGCs.


Asunto(s)
Receptores AMPA/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Células Ganglionares de la Retina/fisiología , Membranas Sinápticas/metabolismo , Transmisión Sináptica
2.
Mol Cell Neurosci ; 48(2): 161-70, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21807099

RESUMEN

Activation of metabotropic- (mGluRs) or NMDA-type glutamate receptors (NMDARs) each can induce long-term depression (LTD) of synaptic transmission in CA1 hippocampal neurons. These two forms of LTD are triggered by diverse signaling pathways yet both are expressed by the internalization of AMPA-type glutamate receptors (AMPARs). An unanswered question remains as to whether the convergence of the mGluR and NMDAR signaling pathways on AMPAR endocytosis renders these two forms of plasticity functionally equivalent, with both pathways inducing endocytosis of the same population of synaptic AMPARs. We now report evidence that these pathways couple to the endocytosis of distinct populations of AMPARs defined by their mobility in the membrane surface. NMDAR activation enhances removal of surface AMPARs that rapidly cycle into and out of the membrane surface, while activation of mGluRs with DHPG results in the internalization of a non-mobile population of AMPARs. Glutamate Receptor Interacting Proteins 1 and 2 (GRIP1/2) play a key role in defining the non-cycling receptor population. GRIP1/2 knockdown with siRNA increases the proportion of rapidly cycling surface AMPARs and inhibits mGluR- but not NMDAR-mediated AMPAR internalization. Additionally, we find that mGluR activation dissociates surface AMPARs from GRIP1/2 while stimulation of NMDARs elicits the loss of membrane receptors not bound to GRIP1/2. We propose that these two receptor pathways can drive the endocytosis of distinct populations of AMPARs: NMDARs activation induces the endocytosis of rapidly cycling surface AMPARs not directly associated with GRIP1/2 while mGluR activation induces the endocytosis of non-cycling GRIP-bound surface AMPARs.


Asunto(s)
Endocitosis/fisiología , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Hipocampo/citología , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Depresión Sináptica a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/fisiología , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
3.
J Neurophysiol ; 96(4): 1734-45, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16823030

RESUMEN

Fragile X syndrome is produced by a defect in a single X-linked gene, called Fmr1, and is characterized by abnormal dendritic spine morphologies with spines that are longer and thinner in neocortex than those from age-matched controls. Studies using Fmr1 knockout mice indicate that spine abnormalities are especially pronounced in the first month of life, suggesting that altered developmental plasticity underlies some of the behavioral phenotypes associated with the syndrome. To address this issue, we used intracellular recordings in neocortical slices from early postnatal mice to examine the effects of Fmr1 disruption on two forms of plasticity active during development. One of these, long-term potentiation of intrinsic excitability, is intrinsic in expression and requires mGluR5 activation. The other, spike timing-dependent plasticity, is synaptic in expression and requires N-methyl-d-aspartate receptor activation. While intrinsic plasticity was normal in the knockout mice, synaptic plasticity was altered in an unusual and striking way: long-term depression was robust but long-term potentiation was entirely absent. These findings underscore the ideas that Fmr1 has highly selective effects on plasticity and that abnormal postnatal development is an important component of the disorder.


Asunto(s)
Animales Recién Nacidos/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Neocórtex/crecimiento & desarrollo , Plasticidad Neuronal/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/fisiología , Plasticidad Neuronal/genética , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/genética , Sinapsis/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA