Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 107(21): 215003, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22181890

RESUMEN

Observations in the ASDEX Upgrade tokamak show a correlation between the gradient of the intrinsic toroidal rotation profile and the logarithmic gradient of the electron density profile. The intrinsic toroidal rotation in the center of the plasma reverses from co- to countercurrent when the logarithmic density gradients are large, and the turbulence is either dominated by trapped electron modes or is at the transition between ion temperature gradient and trapped electron modes. A study based on local gyrokinetic calculations suggests that the dominant trend in the observations can be explained by the combination of residual stresses produced by E × B and profile shearing mechanisms.

2.
Phys Rev Lett ; 105(13): 135003, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-21230780

RESUMEN

The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak à Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.

3.
Phys Rev Lett ; 102(12): 125001, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19392289

RESUMEN

The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA