Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280375

RESUMEN

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Asunto(s)
Intestinos , Hígado , Animales , Ratones , Proliferación Celular , Hígado/metabolismo , PPAR alfa/metabolismo , Proteómica , Células Madre/metabolismo , Vía de Señalización Wnt , Intestinos/citología , Intestinos/metabolismo
2.
Nature ; 630(8017): 695-703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692285

RESUMEN

The body-brain axis is emerging as a principal conductor of organismal physiology. It senses and controls organ function1,2, metabolism3 and nutritional state4-6. Here we show that a peripheral immune insult strongly activates the body-brain axis to regulate immune responses. We demonstrate that pro-inflammatory and anti-inflammatory cytokines communicate with distinct populations of vagal neurons to inform the brain of an emerging inflammatory response. In turn, the brain tightly modulates the course of the peripheral immune response. Genetic silencing of this body-brain circuit produced unregulated and out-of-control inflammatory responses. By contrast, activating, rather than silencing, this circuit affords neural control of immune responses. We used single-cell RNA sequencing, combined with functional imaging, to identify the circuit components of this neuroimmune axis, and showed that its selective manipulation can effectively suppress the pro-inflammatory response while enhancing an anti-inflammatory state. The brain-evoked transformation of the course of an immune response offers new possibilities in the modulation of a wide range of immune disorders, from autoimmune diseases to cytokine storm and shock.


Asunto(s)
Encéfalo , Citocinas , Inflamación , Neuroinmunomodulación , Animales , Femenino , Masculino , Ratones , Encéfalo/citología , Encéfalo/inmunología , Encéfalo/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Neuroinmunomodulación/inmunología , Neuroinmunomodulación/fisiología , Neuronas/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Análisis de Expresión Génica de una Sola Célula
3.
Am J Pathol ; 191(9): 1537-1549, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139193

RESUMEN

Epithelial barrier impairment is a hallmark of several pathologic processes in the gut, including inflammatory bowel diseases. Several intracellular signals prevent apoptosis in intestinal epithelial cells. Herein, we show that in colonocytes, rictor/mammalian target of rapamycin complex 2 (mTORC2) signaling is a prosurvival stimulus. Mechanistically, mTORC2 activates Akt, which, in turn, inhibits apoptosis by phosphorylating B-cell lymphoma 2 (BCL2) associated agonist of cell death (Bad) and preventing caspase-3 activation. Nevertheless, during inflammation, rictor/mTORC2 signaling declines and Akt activity is reduced. Consequently, active caspase-3 increases in surface colonocytes undergoing apoptosis/anoikis and causes epithelial barrier breakdown. Likewise, Rictor ablation in intestinal epithelial cells interrupts mTORC2/Akt signaling and increases apoptosis/anoikis of surface colonocytes without affecting the crypt architecture. The increase in epithelial permeability induced by Rictor ablation produces a mild inflammatory response in the colonic mucosa, but minimally affects the development/establishment of colitis. The data identify a previously unknown mechanism by which rictor/mTORC2 signaling regulates apoptosis/anoikis in intestinal epithelial cells during colitis and clarify its role in the maintenance of the intestinal epithelial barrier.


Asunto(s)
Apoptosis/fisiología , Colitis/patología , Células Epiteliales/metabolismo , Mucosa Intestinal/patología , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Animales , Colitis/metabolismo , Células Epiteliales/patología , Mucosa Intestinal/metabolismo , Ratones , Transducción de Señal/fisiología
4.
Front Immunol ; 13: 979749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059446

RESUMEN

Mucosal innate immunity functions as the first line of defense against invading pathogens. Members of the IL-1 family are key cytokines upregulated in the inflamed mucosa. Inflammatory cytokines are regulated by limiting their function and availability through their activation and secretion mechanisms. IL-1 cytokines secretion is affected by the lack of a signal peptide on their sequence, which prevents them from accessing the conventional protein secretion pathway; thus, they use unconventional protein secretion pathways. Here we show in mouse macrophages that LPS/ATP stimulation induces cytokine relocalization to the plasma membrane, and conventional secretion blockade using monensin or Brefeldin A triggers no IL-36γ accumulation within the cell. In silico modeling indicates IL-36γ can pass through both the P2X7R and Gasdermin D pores, and both IL-36γ, P2X7R and Gasdermin D mRNA are upregulated in inflammation; further, experimental blockade of these receptors' limits IL-36γ release. Our results demonstrate that IL-36γ is secreted mainly by an unconventional pathway through membrane pores formed by P2X7R and Gasdermin D.


Asunto(s)
Inmunidad Mucosa , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Transporte Biológico , Citocinas/metabolismo , Interleucina-1 , Ratones
5.
Curr Eye Res ; 46(4): 600-605, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32865440

RESUMEN

PURPOSE: Deficiency in Cystathionine ß-synthase (CBS) leads to an abnormal accumulation of homocysteine and results in classical homocystinuria, a multi-systemic disorder that affects connective tissue, muscles, the central nervous system, and the eyes. However, the genetic players and mechanisms underlying vision alterations in patients with homocystinuria are little understood. MATERIALS AND METHODS: The fruit fly, Drosophila melanogaster, is a useful system to investigate the genetic basis of several human diseases, but no study to date has used Drosophila as model of homocystinuria. Here, we use Drosophila genetic tools to down-regulate CBS expression and evaluate its behavioral response to light. RESULTS: We show that CBS-deficient flies do not display the normal stereotypical behavior of attraction towards a luminous source, known as phototaxis. This behavior cannot be attributed to a motor or olfactory deficiency, but it is most likely related to a lower visual acuity. CBS-deficient flies are overall smaller, but smaller eyes do not explain their lack of phototactic response. CONCLUSIONS: The vision phenotype of CBS knock-down flies is consistent with severe myopia in homocystinuria patients. We propose to use Drosophila as a model to investigate ocular manifestations underlying homocystinuria.


Asunto(s)
Cistationina betasintasa/deficiencia , Drosophila melanogaster/enzimología , Fototaxis/fisiología , Trastornos de la Visión/enzimología , Animales , Western Blotting , Cistationina betasintasa/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Homocisteína/metabolismo , Homocistinuria/enzimología , Trastornos de la Visión/fisiopatología
6.
J Vis Exp ; (172)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34180884

RESUMEN

Epithelial cells lining the intestinal mucosa create a physical barrier that separates the luminal content from the interstitium. Epithelial barrier impairment has been associated with the development of various pathologies such as inflammatory bowel diseases (IBD). In the inflamed mucosa, superficial erosions or micro-erosions that corrupt epithelial monolayers correspond to sites of high permeability. Several mechanisms have been implicated in the formation of micro-erosions including cell shedding and apoptosis. These micro-erosions often represent microscopic epithelial gaps randomly distributed in the colon. Visualization and quantification of those epithelial gaps has emerged as an important tool to investigate intestinal epithelial barrier function. Here, we describe a new method to visualize the specific location of where transcellular and paracellular permeability is enhanced in the inflamed colonic mucosa. In this assay, we apply a 10 kDa fluorescent dye conjugated to a lysine fixable dextran to visualize high permeability regions (HPR) in the colonic mucosa. Additional use of cell death markers revealed that HPR encompass apoptotic foci where epithelial extrusion/shedding occurs. The protocol described here provides a simple but effective approach to visualize and quantify micro-erosions in the intestine, which is a very useful tool in disease models, in which the intestinal epithelial barrier is compromised.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Colon , Células Epiteliales , Técnica del Anticuerpo Fluorescente , Humanos , Permeabilidad , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA