Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(36): 11258-63, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305930

RESUMEN

Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.


Asunto(s)
Mitosis , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Huso Acromático/metabolismo , Actomiosina/metabolismo , Animales , Forma de la Célula , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Reproducibilidad de los Resultados
2.
Biophys J ; 111(3): 589-600, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27508442

RESUMEN

The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.


Asunto(s)
Membrana Celular/metabolismo , Mitosis , Reología , Fenómenos Biomecánicos , Elasticidad , Células HeLa , Humanos , Viscosidad
3.
Methods ; 60(2): 186-94, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23473778

RESUMEN

The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Fenómenos Biomecánicos , Forma de la Célula , Fuerza Compresiva , Células HeLa , Humanos , Microscopía de Fuerza Atómica/instrumentación , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/fisiología , Estrés Fisiológico
4.
Dev Cell ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047738

RESUMEN

Spontaneous locomotion is a common feature of most metazoan cells, generally attributed to the properties of actomyosin networks. This force-producing machinery has been studied down to the most minute molecular details, especially in lamellipodium-driven migration. Nevertheless, how actomyosin networks work inside contraction-driven amoeboid cells still lacks unifying principles. Here, using stable motile blebs from HeLa cells as a model amoeboid motile system, we imaged the dynamics of the actin cortex at the single filament level and revealed the co-existence of three distinct rheological phases. We introduce "advected percolation," a process where rigidity percolation and active advection synergize, spatially organizing the actin network's mechanical properties into a minimal and generic locomotion mechanism. Expanding from our observations on simplified systems, we speculate that this model could explain, down to the single actin filament level, how amoeboid cells, such as cancer or immune cells, can propel efficiently through complex 3D environments.

5.
Nat Commun ; 8(1): 1266, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097687

RESUMEN

To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.


Asunto(s)
Actomiosina/metabolismo , Forma de la Célula/genética , Proteínas de la Membrana/genética , Mitosis/genética , Proteína Desglicasa DJ-1/genética , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos/genética , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Metafase/genética , Ratones , Microscopía de Fuerza Atómica , Miosina Tipo II/metabolismo , Enfermedad de Parkinson/genética , Fenotipo , Presión , Análisis de la Célula Individual , Huso Acromático/metabolismo , Tensión Superficial , Transgenes
6.
Nat Cell Biol ; 17(2): 148-59, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25621953

RESUMEN

Actomyosin-dependent mitotic rounding occurs in both cell culture and tissue, where it is involved in cell positioning and epithelial organization. How actomyosin is regulated to mediate mitotic rounding is not well understood. Here we characterize the mechanics of single mitotic cells while imaging actomyosin recruitment to the cell cortex. At mitotic onset, the assembly of a uniform DIAPH1-dependent F-actin cortex coincides with initial rounding. Thereafter, cortical enrichment of F-actin remains stable while myosin II progressively accumulates at the cortex, and the amount of myosin at the cortex correlates with intracellular pressure. Whereas F-actin provides only short-term (<10 s) resistance to mechanical deformation, myosin sustains intracellular pressure for a longer duration (>60 s). Our data suggest that progressive accumulation of myosin II to the mitotic cell cortex probably requires the Cdk1 activation of both p21-activated kinases, which inhibit myosin recruitment, and of Rho kinase, which stimulates myosin recruitment to the cortex.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Mitosis , Miosina Tipo II/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacología , Proteínas Fetales/metabolismo , Forminas , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Proteínas de Microfilamentos/metabolismo , Microscopía de Fuerza Atómica , Mitosis/efectos de los fármacos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Presión , Factores de Tiempo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
7.
Nat Commun ; 6: 8872, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26602832

RESUMEN

Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.


Asunto(s)
Actomiosina , Células Epiteliales/ultraestructura , Epitelio/ultraestructura , Presión Hidrostática , Mitosis , Huso Acromático/ultraestructura , Animales , Proliferación Celular , Forma de la Célula , Tamaño de la Célula , Supervivencia Celular , Perros , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Metafase , Microscopía Confocal , Microscopía Electrónica de Rastreo , Presión , Estrés Mecánico , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA