Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38100367

RESUMEN

SpecParam (formally known as FOOOF) allows for the refined measurements of electroencephalography periodic and aperiodic activity, and potentially provides a non-invasive measurement of excitation: inhibition balance. However, little is known about the psychometric properties of this technique. This is integral for understanding the usefulness of SpecParam as a tool to determine differences in measurements of cognitive function, and electroencephalography activity. We used intraclass correlation coefficients to examine the test-retest reliability of parameterized activity across three sessions (90 minutes apart and 30 days later) in 49 healthy young adults at rest with eyes open, eyes closed, and during three eyes closed cognitive tasks including subtraction (Math), music recall (Music), and episodic memory (Memory). Intraclass correlation coefficients were good for the aperiodic exponent and offset (intraclass correlation coefficients > 0.70) and parameterized periodic activity (intraclass correlation coefficients > 0.66 for alpha and beta power, central frequency, and bandwidth) across conditions. Across all three sessions, SpecParam performed poorly in eyes open (40% of participants had poor fits over non-central sites) and had poor test-retest reliability for parameterized periodic activity. SpecParam mostly provides reliable metrics of individual differences in parameterized neural activity. More work is needed to understand the suitability of eyes open resting data for parameterization using SpecParam.


Asunto(s)
Cognición , Electroencefalografía , Adulto Joven , Humanos , Reproducibilidad de los Resultados , Electroencefalografía/métodos
2.
Cogn Affect Behav Neurosci ; 24(2): 269-278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38168850

RESUMEN

Translation of drug targets from preclinical studies to clinical trials has been aided by cross-species behavioral tasks, but evidence for brain-based engagement during task performance is still required. Cross-species progressive ratio breakpoint tasks (PRBTs) measure motivation-related behavior and are pharmacologically and clinically sensitive. We recently advanced elevated parietal alpha power as a cross-species electroencephalographic (EEG) biomarker of PRBT engagement. Given that amphetamine increases breakpoint in mice, we tested its effects on breakpoint and parietal alpha power in both humans and mice. Twenty-three healthy participants performed the PRBT with EEG after amphetamine or placebo in a double-blind design. C57BL/6J mice were trained on PRBT with EEG (n = 24) and were treated with amphetamine or vehicle. A second cohort of mice was trained on PRBT without EEG (n = 40) and was treated with amphetamine or vehicle. In humans, amphetamine increased breakpoint. In mice, during concomitant EEG, 1 mg/kg of amphetamine significantly decreased breakpoint. In cohort 2, however, 0.3 mg/kg of amphetamine increased breakpoint consistent with human findings. Increased alpha power was observed in both species as they reached breakpoint, replicating previous findings. Amphetamine did not affect alpha power in either species. Amphetamine increased effort in humans and mice. Consistent with previous reports, elevated parietal alpha power was observed in humans and mice as they performed the PRBT. Amphetamine did not affect this EEG biomarker of effort. Hence, these findings support the pharmacological predictive validity of the PRBT to measure effort in humans and mice and suggest that this EEG biomarker is not directly reflective of amphetamine-induced changes in effort.


Asunto(s)
Anfetamina , Estimulantes del Sistema Nervioso Central , Electroencefalografía , Ratones Endogámicos C57BL , Motivación , Anfetamina/farmacología , Humanos , Animales , Masculino , Electroencefalografía/efectos de los fármacos , Adulto , Adulto Joven , Método Doble Ciego , Motivación/efectos de los fármacos , Motivación/fisiología , Femenino , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Ratones , Ritmo alfa/efectos de los fármacos , Ritmo alfa/fisiología
3.
Psychophysiology ; 61(4): e14478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37937898

RESUMEN

Parkinson's disease (PD) has been associated with greater total power in canonical frequency bands (i.e., alpha, beta) of the resting electroencephalogram (EEG). However, PD has also been associated with a reduction in the proportion of total power across all frequency bands. This discrepancy may be explained by aperiodic activity (exponent and offset) present across all frequency bands. Here, we examined differences in the eyes-open (EO) and eyes-closed (EC) resting EEG of PD participants (N = 26) on and off medication, and age-matched healthy controls (CTL; N = 26). We extracted power from canonical frequency bands using traditional methods (total alpha and beta power) and extracted separate parameters for periodic (parameterized alpha and beta power) and aperiodic activity (exponent and offset). Cluster-based permutation tests over spatial and frequency dimensions indicated that total alpha and beta power, and aperiodic exponent and offset were greater in PD participants, independent of medication status. After removing the exponent and offset, greater alpha power in PD (vs. CTL) was only present in EO recordings and no reliable differences in beta power were observed. Differences between PD and CTL in the resting EEG are likely driven by aperiodic activity, suggestive of greater relative inhibitory neural activity and greater neuronal spiking. Our findings suggest that resting EEG activity in PD is characterized by medication-invariant differences in aperiodic activity which is independent of the increase in alpha power with EO. This highlights the importance of considering aperiodic activity contributions to the neural correlates of brain disorders.


Asunto(s)
Enfermedad de Parkinson , Humanos , Electroencefalografía , Descanso/fisiología
4.
Eur J Neurosci ; 57(4): 680-691, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36550631

RESUMEN

A 10-Hz repetitive transcranial magnetic stimulation to the left dorsal lateral prefrontal cortex has been shown to increase dopaminergic activity in the dorsal striatum, a region strongly implicated in reinforcement learning. However, the behavioural influence of this effect remains largely unknown. We tested the causal effects of 10-Hz stimulation on behavioural and computational characteristics of reinforcement learning. A total of 40 healthy individuals were randomized into active and sham (placebo) stimulation groups. Each participant underwent one stimulation session (1500 pulses) in which stimulation was applied over the left dorsal lateral prefrontal cortex using a robotic arm. Participants then completed a reinforcement learning task sensitive to striatal dopamine functioning. Participants' choices were modelled using a reinforcement learning model (Q-learning) that calculates separate learning rates associated with positive and negative reward prediction errors. Subjects receiving active stimulation exhibited increased reward rate (number of correct responses per second of task activity) compared with those in sham. Computationally, although no group differences were observed, the active group displayed a higher learning rate for correct trials (αG) compared with incorrect trials (αL). Finally, when tested with novel pairs of stimuli, the active group displayed extremely fast reaction times, and a trend towards a higher reward rate. This study provided specific behavioural and computational accounts of altered striatal-mediated behaviour, particularly response vigour, induced by a proposed increase of dopamine activity by 10-Hz stimulation to the left dorsal lateral prefrontal cortex. Together, these findings bolster the use of repetitive transcranial magnetic stimulation to target neurocognitive disturbances attributed to the dysregulation of dopaminergic-striatal circuits.


Asunto(s)
Dopamina , Estimulación Magnética Transcraneal , Humanos , Adulto , Dopamina/farmacología , Refuerzo en Psicología , Aprendizaje/fisiología , Recompensa , Corteza Prefrontal/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37853299

RESUMEN

We recently advanced a rodent homologue for the reward-specific, event-related potential component observed in humans known as the Reward Positivity. We sought to determine the cortical source of this signal in mice to further test the nature of this homology. While similar reward-related cortical signals have been identified in rats, these recordings were all performed in cingulate gyrus. Given the value-dependent nature of this event, we hypothesized that more ventral prelimbic and infralimbic areas also contribute important variance to this signal. Depth probes assessed local field activity in 29 mice (15 males) while they completed multiple sessions of a probabilistic reinforcement learning task. Using a priori regions of interest, we demonstrated that the depth of recording in the cortical midline significantly correlated with the size of reward-evoked delta band spectral activity as well as the single trial correlation between delta power and reward prediction error. These findings provide important verification of the validity of this translational biomarker of reward responsiveness, learning, and valuation.

6.
J Neurol Neurosurg Psychiatry ; 94(11): 945-953, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37263767

RESUMEN

BACKGROUND: Cognitive dysfunction is a major feature of Parkinson's disease (PD), but the pathophysiology remains unknown. One potential mechanism is abnormal low-frequency cortical rhythms which engage cognitive functions and are deficient in PD. We tested the hypothesis that mid-frontal delta/theta rhythms predict cognitive dysfunction in PD. METHOD: We recruited 100 patients with PD and 49 demographically similar control participants who completed a series of cognitive control tasks, including the Simon, oddball and interval-timing tasks. We focused on cue-evoked delta (1-4 Hz) and theta (4-7 Hz) rhythms from a single mid-frontal EEG electrode (cranial vertex (Cz)) in patients with PD who were either cognitively normal, with mild-cognitive impairments (Parkinson's disease with mild-cognitive impairment) or had dementia (Parkinson's disease dementia). RESULTS: We found that PD-related cognitive dysfunction was associated with increased response latencies and decreased mid-frontal delta power across all tasks. Within patients with PD, the first principal component of evoked electroencephalography features from a single electrode (Cz) strongly correlated with clinical metrics such as the Montreal Cognitive Assessment score (r=0.34) and with National Institutes of Health Toolbox Executive Function score (r=0.46). CONCLUSIONS: These data demonstrate that cue-evoked mid-frontal delta/theta rhythms directly relate to cognition in PD. Our results provide insight into the nature of low-frequency frontal rhythms and suggest that PD-related cognitive dysfunction results from decreased delta/theta activity. These findings could facilitate the development of new biomarkers and targeted therapies for cognitive symptoms of PD.


Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Humanos , Demencia/complicaciones , Disfunción Cognitiva/complicaciones , Electroencefalografía/métodos , Ritmo Teta/fisiología
7.
Cereb Cortex ; 33(2): 469-485, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35297483

RESUMEN

Novelty detection is a primitive subcomponent of cognitive control that can be deficient in Parkinson's disease (PD) patients. Here, we studied the corticostriatal mechanisms underlying novelty-response deficits. In participants with PD, we recorded from cortical circuits with scalp-based electroencephalography (EEG) and from subcortical circuits using intraoperative neurophysiology during surgeries for implantation of deep brain stimulation (DBS) electrodes. We report three major results. First, novel auditory stimuli triggered midfrontal low-frequency rhythms; of these, 1-4 Hz "delta" rhythms were linked to novelty-associated slowing, whereas 4-7 Hz "theta" rhythms were specifically attenuated in PD. Second, 32% of subthalamic nucleus (STN) neurons were response-modulated; nearly all (94%) of these were also modulated by novel stimuli. Third, response-modulated STN neurons were coherent with midfrontal 1-4 Hz activity. These findings link scalp-based measurements of neural activity with neuronal activity in the STN. Our results provide insight into midfrontal cognitive control mechanisms and how purported hyperdirect frontobasal ganglia circuits evaluate new information.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Electroencefalografía , Neuronas/fisiología
8.
Cogn Affect Behav Neurosci ; 22(2): 258-267, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34599487

RESUMEN

The EEG feature known as the Reward Positivity (RewP) is elicited by reward receipt and appears to reflect sensitively and specifically positive prediction errors during reinforcement learning. Yet, the RewP also is modulated by state and trait affect, suggesting that it has a more complex computational role than simple reinforcement surprise. We conducted a series of experiments aimed to investigate underlying affect processing reflected in the RewP during a reinforcement learning task. In the first experiment (N = 25), we manipulated the type of rewards a person could win (simple points or hedonically-appraised pictures). Although there were no differences in the amplitudes of the RewP for different types of rewards, there was a significant correlation between the individual rating of liking for the images and RewP amplitude. In a second experiment (N = 25), we manipulated reinforcement rates (easy vs. hard) and affective picture content (liked vs. ambivalent) to examine the potential interaction of prediction error and liking on RewP amplitude. We again found a significant relationship between liking and RewP amplitude, however, only in the hard condition. These findings suggest that the RewP reflects cortical computations of reward surprise as well as hedonic liking, identifying it as a possible nexus where multidimensional value is computed.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Aprendizaje , Refuerzo en Psicología , Recompensa
9.
PLoS Comput Biol ; 17(2): e1008553, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33566831

RESUMEN

Pavlovian associations drive approach towards reward-predictive cues, and avoidance of punishment-predictive cues. These associations "misbehave" when they conflict with correct instrumental behavior. This raises the question of how Pavlovian and instrumental influences on behavior are arbitrated. We test a computational theory according to which Pavlovian influence will be stronger when inferred controllability of outcomes is low. Using a model-based analysis of a Go/NoGo task with human subjects, we show that theta-band oscillatory power in frontal cortex tracks inferred controllability, and that these inferences predict Pavlovian action biases. Functional MRI data revealed an inferior frontal gyrus correlate of action probability and a ventromedial prefrontal correlate of outcome valence, both of which were modulated by inferred controllability.


Asunto(s)
Condicionamiento Operante , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Teorema de Bayes , Simulación por Computador , Toma de Decisiones , Lóbulo Frontal , Humanos , Modelos Neurológicos , Neuroimagen/métodos , Corteza Prefrontal/fisiología , Castigo , Recompensa , Adulto Joven
10.
Neuroimage ; 189: 130-140, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30639331

RESUMEN

Investigations into the neurophysiological underpinnings of control suggest that frontal theta activity is increased with the need for control. However, these studies typically show this link by reporting associations between increased theta and RT slowing - a process that is contemporaneous with cognitive control but does not strictly reflect the specific use of control. In this study, we assessed frontal theta responses that underpinned the switch cost in task switching - a specific index of cognitive control that does not rely exclusively on RT slowing. Here, we utilised a single-trial regression approach to assess 1) how cognitive control demands beyond simple RT slowing were linked to midfrontal theta and 2) whether midfrontal theta effects remained stable over time. In a large cohort that included a longitudinal subsample, we found that midfrontal theta was modulated by switch costs, with enhanced theta power when preparing to switch vs. repeating a task. These effects were reliable after a two-year interval (Cronbach's α.39-0.74). In contrast, we found that trial-by-trial modulations of midfrontal theta power predicted the size of the switch cost - so that switch trials with increased theta produced smaller switch costs. Interestingly, these relationships between theta and behaviour were less stable over time (Cronbach's α 0-0.61), with participants first using both delta and theta bands to influence behaviour whereas after two years only theta associations with behaviour remained. Together, these findings suggest midfrontal theta supports the need for control beyond simple RT slowing and reveal that midfrontal theta effects remain relatively stable over time.


Asunto(s)
Electroencefalografía/métodos , Función Ejecutiva/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Ritmo Teta/fisiología , Adolescente , Adulto , Señales (Psicología) , Femenino , Humanos , Estudios Longitudinales , Masculino , Reconocimiento Visual de Modelos/fisiología , Adulto Joven
11.
Cogn Affect Behav Neurosci ; 19(4): 910-926, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30607833

RESUMEN

Cognitive control is critical for dynamically guiding goal-directed behavior, particularly when applying preparatory, or proactive, control processes. However, it is unknown how proactive control is modulated by timing demands. This study investigated how timing demands may instantiate distinct neural processes and contribute to the use of different types of proactive control. In two experiments, healthy young adults performed the AX-Continuous Performance Task (AX-CPT) or Dot Pattern Expectancy (DPX) task. The delay between informative cue and test probe was manipulated by block to be short (1s) or long (~3s). We hypothesized that short cue-probe delays would rely more on a rapid goal updating process (akin to task-switching), whereas long cue-probe delays would utilize more of an active maintenance process (akin to working memory). Short delay lengths were associated with specific impairments in rare probe accuracy. EEG responses to control-demanding cues revealed delay-specific neural signatures, which replicated across studies. In the short delay condition, EEG activities associated with task-switching were specifically enhanced, including increased early anterior positivity ERP amplitude (accompanying greater mid-frontal theta power) and a larger late differential switch positivity. In the long delay condition, we observed study-specific sustained increases in ERP amplitude following control-demanding cues, which may be suggestive of active maintenance. Collectively, these findings suggest that timing demands may instantiate distinct proactive control processes. These findings suggest a reevaluation of AX-CPT and DPX as pure assessments of working memory and highlight the need to understand how presumably benign task parameters, such as cue-probe delay length, significantly alter cognitive control.


Asunto(s)
Potenciales Evocados/fisiología , Función Ejecutiva/fisiología , Memoria a Corto Plazo/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Factores de Tiempo , Adulto Joven
12.
Cogn Affect Behav Neurosci ; 18(3): 509-520, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29569219

RESUMEN

The interplay of dopaminergic striatal D1-D2 circuits is thought to support working memory (WM) by selectively filtering information that is to be remembered versus information to be ignored. To test this theory, we conducted an experiment in which healthy participants performed a visuospatial working memory (VSWM) task after ingesting the D2-receptor agonist cabergoline (or placebo), in a randomized, double-blinded, crossover design. Results showed greater interference from distractors under cabergoline, particularly for individuals with higher baseline dopamine (indicated by WM span). These findings support computational theories of striatal D1-D2 function during WM encoding and distractor-filtering, and provide new evidence for interactive cortico-striatal systems that support VSWM capacity and their dependence on WM span.


Asunto(s)
Agonistas de Dopamina/farmacología , Individualidad , Memoria a Corto Plazo/efectos de los fármacos , Recuerdo Mental/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Adolescente , Adulto , Femenino , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Adulto Joven
13.
J Neurosci ; 35(2): 485-94, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589744

RESUMEN

What are the neural dynamics of choice processes during reinforcement learning? Two largely separate literatures have examined dynamics of reinforcement learning (RL) as a function of experience but assuming a static choice process, or conversely, the dynamics of choice processes in decision making but based on static decision values. Here we show that human choice processes during RL are well described by a drift diffusion model (DDM) of decision making in which the learned trial-by-trial reward values are sequentially sampled, with a choice made when the value signal crosses a decision threshold. Moreover, simultaneous fMRI and EEG recordings revealed that this decision threshold is not fixed across trials but varies as a function of activity in the subthalamic nucleus (STN) and is further modulated by trial-by-trial measures of decision conflict and activity in the dorsomedial frontal cortex (pre-SMA BOLD and mediofrontal theta in EEG). These findings provide converging multimodal evidence for a model in which decision threshold in reward-based tasks is adjusted as a function of communication from pre-SMA to STN when choices differ subtly in reward values, allowing more time to choose the statistically more rewarding option.


Asunto(s)
Toma de Decisiones , Lóbulo Frontal/fisiología , Refuerzo en Psicología , Núcleo Subtalámico/fisiología , Adolescente , Adulto , Condicionamiento Psicológico , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Ritmo Teta
14.
J Cogn Neurosci ; 28(12): 1923-1932, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27417205

RESUMEN

The ability to adapt to aversive stimuli is critical for mental health. Here, we investigate the relationship between habituation to startling stimuli and startle-related activity in medial frontal cortex as measured by EEG in both healthy control participants and patients with Parkinson disease (PD). We report three findings. First, patients with PD exhibited normal initial startle responses but reduced startle habituation relative to demographically matched controls. Second, control participants had midfrontal EEG theta activity in response to startling stimuli, and this activity was attenuated in patients with PD. Finally, startle-related midfrontal theta activity was correlated with the rate of startle habituation. These data indicate that impaired startle habituation in PD is a result of attenuated midfrontal cognitive control signals. Our findings could provide insight into the frontal regulation of startle habituation.


Asunto(s)
Lóbulo Frontal/fisiopatología , Habituación Psicofisiológica/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Reflejo de Sobresalto/fisiología , Antiparkinsonianos/uso terapéutico , Parpadeo/fisiología , Electroencefalografía , Función Ejecutiva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Enfermedad de Parkinson/tratamiento farmacológico , Índice de Severidad de la Enfermedad
15.
Neuroimage ; 133: 1-13, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26952196

RESUMEN

Cognitive neuroscience suffers from a unique and pervasive problem of generalizability. Since neural findings are often interpreted in the context of a specific manipulation during a carefully controlled task, it is hard to transfer knowledge from one task to another. In this report we address problems of generalizability with two methodological advancements. First, we aimed to transcend status quo experimental procedures with a continuous, engaging task environment. To this end, we created a novel 8-bit style continuous space shooter video game that elicits a multitude of goal-oriented events, such as crashing into a wall or blowing up an enemy with a missile. Second, we aimed to objectively define the psychological significance of these events. To achieve this aim, we used pattern classification of EEG data to derive predictive weights from carefully controlled pre-game exemplar events (oddball target detection and gambling wins and losses) and transferred those weights to EEG activities during video game events. All major goal-oriented events (crashes into the wall, crashes into an enemy, missile hit on an enemy) had a significant between-task transfer bias towards oddball target weights in the time range of the canonical P3, indicating the presence of similar salience detection processes. Missile hits on an enemy were specifically identified as gambling wins, confirming the hypothesis that this goal-oriented event was appetitive. These findings suggest that it is possible to identify the contribution of canonical neural activities during otherwise ambiguous and uncontrolled task performance.


Asunto(s)
Atención , Encéfalo/fisiopatología , Juego de Azar/fisiopatología , Objetivos , Análisis y Desempeño de Tareas , Juegos de Video , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Red Nerviosa/fisiopatología
16.
J Neurosci ; 34(13): 4677-85, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672013

RESUMEN

Human cognition is flexible and adaptive, affording the ability to detect and leverage complex structure inherent in the environment and generalize this structure to novel situations. Behavioral studies show that humans impute structure into simple learning problems, even when this tendency affords no behavioral advantage. Here we used electroencephalography to investigate the neural dynamics indicative of such incidental latent structure. Event-related potentials over lateral prefrontal cortex, typically observed for instructed task rules, were stratified according to individual participants' constructed rule sets. Moreover, this individualized latent rule structure could be independently decoded from multielectrode pattern classification. Both neural markers were predictive of participants' ability to subsequently generalize rule structure to new contexts. These EEG dynamics reveal that the human brain spontaneously constructs hierarchically structured representations during learning of simple task rules.


Asunto(s)
Mapeo Encefálico , Potenciales Evocados/fisiología , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Percepción de Color , Simulación por Computador , Señales (Psicología) , Electroencefalografía , Femenino , Humanos , Masculino , Modelos Biológicos , Reconocimiento Visual de Modelos , Estimulación Luminosa , Tiempo de Reacción/fisiología
17.
J Neurosci ; 34(50): 16774-83, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25505330

RESUMEN

Organizing behavior in time is a fundamental process that is highly conserved across species. Here we study the neural basis of timing processes. First, we found that rodents had a burst of stimulus-triggered 4 Hz oscillations in the medial frontal cortex (MFC) during interval timing tasks. Second, rodents with focally disrupted MFC D1 dopamine receptor (D1DR) signaling had impaired interval timing performance and weaker stimulus-triggered oscillations. Prior work has demonstrated that MFC neurons ramp during interval timing, suggesting that they underlie temporal integration. We found that MFC D1DR blockade strongly attenuated ramping activity of MFC neurons that correlated with behavior. These macro- and micro-level phenomena were linked, as we observed that MFC neurons with strong ramping activity tended to be coherent with stimulus-triggered 4 Hz oscillations, and this relationship was diminished with MFC D1DR blockade. These data provide evidence demonstrating how D1DR signaling controls the temporal organization of mammalian behavior.


Asunto(s)
Relojes Biológicos/fisiología , Lóbulo Frontal/fisiología , Tiempo de Reacción/fisiología , Receptores de Dopamina D1/fisiología , Animales , Mapeo Encefálico/métodos , Condicionamiento Operante/fisiología , Masculino , Neuronas/fisiología , Ratas , Ratas Long-Evans
18.
Neuroimage ; 110: 205-16, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25676913

RESUMEN

Recent work has suggested that reward prediction errors elicit a positive voltage deflection in the scalp-recorded electroencephalogram (EEG); an event sometimes termed a reward positivity. However, a strong test of this proposed relationship remains to be defined. Other important questions remain unaddressed: such as the role of the reward positivity in predicting future behavioral adjustments that maximize reward. To answer these questions, a three-armed bandit task was used to investigate the role of positive prediction errors during trial-by-trial exploration and task-set based exploitation. The feedback-locked reward positivity was characterized by delta band activities, and these related EEG features scaled with the degree of a computationally derived positive prediction error. However, these phenomena were also dissociated: the computational model predicted exploitative action selection and related response time speeding whereas the feedback-locked EEG features did not. Compellingly, delta band dynamics time-locked to the subsequent bandit (the P3) successfully predicted these behaviors. These bandit-locked findings included an enhanced parietal to motor cortex delta phase lag that correlated with the degree of response time speeding, suggesting a mechanistic role for delta band activities in motivating action selection. This dissociation in feedback vs. bandit locked EEG signals is interpreted as a differentiation in hierarchically distinct types of prediction error, yielding novel predictions about these dissociable delta band phenomena during reinforcement learning and decision making.


Asunto(s)
Conducta/fisiología , Corteza Cerebral/fisiología , Ritmo Delta/fisiología , Ajuste Emocional/fisiología , Recompensa , Electroencefalografía , Femenino , Humanos , Aprendizaje/fisiología , Masculino , Modelos Estadísticos , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adulto Joven
19.
J Neurophysiol ; 114(2): 1310-20, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26133799

RESUMEN

The temporal control of action is a highly conserved and critical mammalian behavior. Here, we investigate the neuronal basis of this process using an interval timing task. In rats and humans, instructional timing cues triggered spectral power across delta and theta bands (2-6 Hz) from the medial frontal cortex (MFC). Humans and rodents with dysfunctional dopamine have impaired interval timing, and we found that both humans with Parkinson's disease (PD) and rodents with local MFC dopamine depletion had attenuated delta and theta activity. In rodents, spectral activity in this range could functionally couple single MFC neurons involved in temporal processing. Without MFC dopamine, these neurons had less functional coupling with delta/theta activity and less temporal processing. Finally, in humans this 2- to 6-Hz activity was correlated with executive function in matched controls but not in PD patients. Collectively, these findings suggest that cue-evoked low-frequency rhythms could be a clinically important biomarker of PD that is translatable to rodent models, facilitating mechanistic inquiry and the development of neurophysiological biomarkers for human disease.


Asunto(s)
Ritmo Delta/fisiología , Dopamina/metabolismo , Lóbulo Frontal/fisiopatología , Enfermedad de Parkinson/fisiopatología , Ritmo Teta/fisiología , Percepción del Tiempo/fisiología , Animales , Antiparkinsonianos/uso terapéutico , Condicionamiento Operante/fisiología , Electroencefalografía , Femenino , Humanos , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Neuronas/fisiología , Pruebas Neuropsicológicas , Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Ratas Long-Evans
20.
J Neurosci ; 33(19): 8541-8, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658191

RESUMEN

Pavlovian biases influence learning and decision making by intricately coupling reward seeking with action invigoration and punishment avoidance with action suppression. This bias is not always adaptive-it can often interfere with instrumental requirements. The prefrontal cortex is thought to help resolve such conflict between motivational systems, but the nature of this control process remains unknown. EEG recordings of midfrontal theta band power are sensitive to conflict and predictive of adaptive control over behavior, but it is not clear whether this signal reflects control over conflict between motivational systems. Here we used a task that orthogonalized action requirements and outcome valence while recording concurrent EEG in human participants. By applying a computational model of task performance, we derived parameters reflective of the latent influence of Pavlovian bias and how it was modulated by midfrontal theta power during motivational conflict. Between subjects, those who performed better under Pavlovian conflict exhibited higher midfrontal theta power. Within subjects, trial-to-trial variance in theta power was predictive of ability to overcome the influence of the Pavlovian bias, and this effect was most pronounced in subjects with higher midfrontal theta to conflict. These findings demonstrate that midfrontal theta is not only a sensitive index of prefrontal control, but it can also reflect the application of top-down control over instrumental processes.


Asunto(s)
Sesgo , Condicionamiento Clásico/fisiología , Lóbulo Frontal/fisiología , Ritmo Teta/fisiología , Adolescente , Adulto , Mapeo Encefálico , Simulación por Computador , Toma de Decisiones/fisiología , Electroencefalografía , Femenino , Humanos , Masculino , Modelos Neurológicos , Refuerzo en Psicología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA