Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biophys J ; 120(20): 4360-4377, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34509508

RESUMEN

Membrane binding and unbinding dynamics play a crucial role in the biological activity of several nonintegral membrane proteins, which have to be recruited to the membrane to perform their functions. By localizing to the membrane, these proteins are able to induce downstream signal amplification in their respective signaling pathways. Here, we present a 3D computational approach using reaction-diffusion equations to investigate the relation between membrane localization of focal adhesion kinase (FAK), Ras homolog family member A (RhoA), and signal amplification of the YAP/TAZ signaling pathway. Our results show that the theoretical scenarios in which FAK is membrane bound yield robust and amplified YAP/TAZ nuclear translocation signals. Moreover, we predict that the amount of YAP/TAZ nuclear translocation increases with cell spreading, confirming the experimental findings in the literature. In summary, our in silico predictions show that when the cell membrane interaction area with the underlying substrate increases, for example, through cell spreading, this leads to more encounters between membrane-bound signaling partners and downstream signal amplification. Because membrane activation is a motif common to many signaling pathways, this study has important implications for understanding the design principles of signaling networks.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal , Fosfoproteínas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
2.
Haematologica ; 104(6): 1256-1267, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30545925

RESUMEN

In combination with microspotting, whole-blood microfluidics can provide high-throughput information on multiple platelet functions in thrombus formation. Based on assessment of the inter- and intra-subject variability in parameters of microspot-based thrombus formation, we aimed to determine the platelet factors contributing to this variation. Blood samples from 94 genotyped healthy subjects were analyzed for conventional platelet phenotyping: i.e. hematologic parameters, platelet glycoprotein (GP) expression levels and activation markers (24 parameters). Furthermore, platelets were activated by ADP, CRP-XL or TRAP. Parallel samples were investigated for whole-blood thrombus formation (6 microspots, providing 48 parameters of adhesion, aggregation and activation). Microspots triggered platelet activation through GP Ib-V-IX, GPVI, CLEC-2 and integrins. For most thrombus parameters, inter-subject variation was 2-4 times higher than the intra-subject variation. Principal component analyses indicated coherence between the majority of parameters for the GPVI-dependent microspots, partly linked to hematologic parameters, and glycoprotein expression levels. Prediction models identified parameters per microspot that were linked to variation in agonist-induced αIIbß3 activation and secretion. Common sequence variation of GP6 and FCER1G, associated with GPVI-induced αIIbß3 activation and secretion, affected parameters of GPVI-and CLEC-2-dependent thrombus formation. Subsequent analysis of blood samples from patients with Glanzmann thrombasthenia or storage pool disease revealed thrombus signatures of aggregation-dependent parameters that were subject-dependent, but not linked to GPVI activity. Taken together, this high-throughput elucidation of thrombus formation revealed patterns of inter-subject differences in platelet function, which were partly related to GPVI-induced activation and common genetic variance linked to GPVI, but also included a distinct platelet aggregation component.


Asunto(s)
Plaquetas/metabolismo , Activación Plaquetaria , Trombosis/etiología , Trombosis/metabolismo , Biomarcadores , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunofenotipificación , Agregación Plaquetaria , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/diagnóstico
3.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181592

RESUMEN

Platelet interaction with collagens, via von Willebrand factor, is a potent trigger of shear-dependent thrombus formation mediated by subsequent engagement of the signaling collagen receptor glycoprotein (GP)VI, enforced by integrin α2ß1. Protein tyrosine kinase Syk is central in the GPVI-induced signaling pathway, leading to elevated cytosolic Ca2+. We aimed to determine the Syk-mediated thrombogenic activity of several collagen peptides and (fibrillar) type I and III collagens. High-shear perfusion of blood over microspots of these substances resulted in thrombus formation, which was assessed by eight parameters and was indicative of platelet adhesion, activation, aggregation, and contraction, which were affected by the Syk inhibitor PRT-060318. In platelet suspensions, only collagen peptides containing the consensus GPVI-activating sequence (GPO)n and Horm-type collagen evoked Syk-dependent Ca2+ rises. In whole blood under flow, Syk inhibition suppressed platelet activation and aggregation parameters for the collagen peptides with or without a (GPO)n sequence and for all of the collagens. Prediction models based on a regression analysis indicated a mixed role of GPVI in thrombus formation on fibrillar collagens, which was abolished by Syk inhibition. Together, these findings indicate that GPVI-dependent signaling through Syk supports platelet activation in thrombus formation on collagen-like structures regardless of the presence of a (GPO)n sequence.


Asunto(s)
Plaquetas/metabolismo , Colágeno/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Quinasa Syk/metabolismo , Trombosis/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/fisiología , Células Cultivadas , Colágeno/química , Ciclohexilaminas/farmacología , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregación Plaquetaria , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Quinasa Syk/antagonistas & inhibidores
4.
Brief Bioinform ; 17(5): 891-901, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26467821

RESUMEN

Many studies now produce parallel data sets from different omics technologies; however, the task of interpreting the acquired data in an integrated fashion is not trivial. This review covers those methods that have been used over the past decade to statistically integrate and interpret metabolomics and transcriptomic data sets. It defines four categories of approaches, correlation-based integration, concatenation-based integration, multivariate-based integration and pathway-based integration, into which all existing statistical methods fit. It also explores the choices in study design for generating samples for analysis by these omics technologies and the impact that these technical decisions have on the subsequent data analysis options.


Asunto(s)
Metabolómica , Transcriptoma , Humanos
5.
Angew Chem Int Ed Engl ; 57(47): 15400-15404, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30303605

RESUMEN

Poly(2-alkyl-2-oxazoline)s (PAOx) are regaining interest for biomedical applications. However, their full potential is hampered by the inability to synthesise uniform high-molar mass PAOx. In this work, we proposed alternative intrinsic chain transfer mechanisms based on 2-oxazoline and oxazolinium chain-end tautomerisation and derived improved polymerization conditions to suppress chain transfer, allowing the synthesis of highly defined poly(2-ethyl-2-oxazoline)s up to ca. 50 kDa (dispersity (Ð) <1.05) and defined polymers up to at least 300 kDa (Ð<1.2). The determination of the chain transfer constants for the polymerisations hinted towards the tautomerisation of the oxazolinium chain end as most plausible cause for chain transfer. Finally, the method was applied for the preparation of up to 60 kDa molar mass copolymers of 2-ethyl-2-oxazoline and 2-methoxycarbonylethyl-2-oxazoline.

6.
Bioinformatics ; 31(13): 2115-22, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25701576

RESUMEN

MOTIVATION: Comparing time courses of gene expression with time courses of phenotypic data may provide new insights in cellular mechanisms. In this study, we compared the performance of five pattern recognition methods with respect to their ability to relate genes and phenotypic data: one classical method (k-means) and four methods especially developed for time series [Short Time-series Expression Miner (STEM), Linear Mixed Model mixtures, Dynamic Time Warping for -Omics and linear modeling with R/Bioconductor limma package]. The methods were evaluated using data available from toxicological studies that had the aim to relate gene expression with phenotypic endpoints (i.e. to develop biomarkers for adverse outcomes). Additionally, technical aspects (influence of noise, number of time points and number of replicates) were evaluated on simulated data. RESULTS: None of the methods outperforms the others in terms of biology. Linear modeling with limma is mostly influenced by noise. STEM is mostly influenced by the number of biological replicates in the dataset, whereas k-means and linear modeling with limma are mostly influenced by the number of time points. In most cases, the results of the methods complement each other. We therefore provide recommendations to integrate the five methods. AVAILABILITY: The Matlab code for the simulations performed in this research is available in the Supplementary Data (Word file). The microarray data analysed in this paper are available at ArrayExpress (E-TOXM-22 and E-TOXM-23) and Gene Expression Omnibus (GSE39291). The phenotypic data are available in the Supplementary Data (Excel file). Links to the pattern recognition tools compared in this paper are provided in the main text. CONTACT: d.hendrickx@maastrichtuniversity.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Antifibrinolíticos/farmacología , Benzo(a)pireno/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Simulación por Computador , Humanos , Modelos Lineales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Fenotipo , Factores de Tiempo , Vitamina K 3/farmacología
7.
Front Immunol ; 15: 1286382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410507

RESUMEN

Introduction: The impact of cardiovascular disease (CVD) risk factors, encompassing various biological determinants and unhealthy lifestyles, on the functional dynamics of circulating monocytes-a pivotal cell type in CVD pathophysiology remains elusive. In this study, we aimed to elucidate the influence of CVD risk factors on monocyte transcriptional responses to an infectious stimulus. Methods: We conducted a comparative analysis of monocyte gene expression profiles from the CTMM - CIRCULATING CELLS Cohort of coronary artery disease (CAD) patients, at baseline and after lipopolysaccharide (LPS) stimulation. Gene co-expression analysis was used to identify gene modules and their correlations with CVD risk factors, while pivotal transcription factors controlling the hub genes in these modules were identified by regulatory network analyses. The identified gene module was subjected to a drug repurposing screen, utilizing the LINCS L1000 database. Results: Monocyte responsiveness to LPS showed a highly significant, negative correlation with blood pressure levels (ρ< -0.4; P<10-80). We identified a ZNF12/ZBTB43-driven gene module closely linked to diastolic blood pressure, suggesting that monocyte responses to infectious stimuli, such as LPS, are attenuated in CAD patients with elevated diastolic blood pressure. This attenuation appears associated with a dampening of the LPS-induced suppression of oxidative phosphorylation. Finally, we identified the serine-threonine inhibitor MW-STK33-97 as a drug candidate capable of reversing this aberrant LPS response. Conclusions: Monocyte responses to infectious stimuli may be hampered in CAD patients with high diastolic blood pressure and this attenuated inflammatory response may be reversed by the serine-threonine inhibitor MW-STK33-97. Whether the identified gene module is a mere indicator of, or causal factor in diastolic blood pressure and the associated dampened LPS responses remains to be determined.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hipertensión , Humanos , Enfermedad de la Arteria Coronaria/metabolismo , Monocitos/metabolismo , Redes Reguladoras de Genes , Lipopolisacáridos/farmacología , Hipertensión/genética , Arterias/metabolismo , Serina/metabolismo , Treonina/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética
8.
Sci Rep ; 14(1): 1045, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200252

RESUMEN

We validated a Deep Embedded Clustering (DEC) model and its adaptation for integrating mixed datatypes (in this study, numerical and categorical variables). Deep Embedded Clustering (DEC) is a promising technique capable of managing extensive sets of variables and non-linear relationships. Nevertheless, DEC cannot adequately handle mixed datatypes. Therefore, we adapted DEC by replacing the autoencoder with an X-shaped variational autoencoder (XVAE) and optimising hyperparameters for cluster stability. We call this model "X-DEC". We compared DEC and X-DEC by reproducing a previous study that used DEC to identify clusters in a population of intensive care patients. We assessed internal validity based on cluster stability on the development dataset. Since generalisability of clustering models has insufficiently been validated on external populations, we assessed external validity by investigating cluster generalisability onto an external validation dataset. We concluded that both DEC and X-DEC resulted in clinically recognisable and generalisable clusters, but X-DEC produced much more stable clusters.


Asunto(s)
Cuidados Críticos , Humanos , Análisis por Conglomerados
9.
J Proteome Res ; 12(6): 2732-41, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23641669

RESUMEN

The development of hepatoma-based in vitro models to study hepatocyte physiology is an invaluable tool for both industry and academia. Here, we develop an in vitro model based on the HepG2 cell line that produces chenodeoxycholic acid, the main bile acid in humans, in amounts comparable to human hepatocytes. A combination of adenoviral transfections for CCAAT/enhancer-binding protein ß (C/EBPß), hepatocyte nuclear factor 4α (HNF4α), and constitutive androstane receptor (CAR) decreased intracellular glutamate, succinate, leucine, and valine levels in HepG2 cells, suggestive of a switch to catabolism to increase lipogenic acetyl CoA and increased anaplerosis to replenish the tricarboxylic acid cycle. Transcripts of key genes involved in bile acid synthesis were significantly induced by approximately 160-fold. Consistently, chenodeoxycholic acid production rate was increased by more than 20-fold. Comparison between mRNA and bile acid levels suggest that 12-alpha hydroxylation of 7-alpha-hydroxy-4-cholesten-3-one is the limiting step in cholic acid synthesis in HepG2 cells. These data reveal that introduction of three hepatocyte-related transcription factors enhance anabolic reactions in HepG2 cells and provide a suitable model to study bile acid biosynthesis under pathophysiological conditions.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Ácido Quenodesoxicólico/biosíntesis , Perfilación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/metabolismo , Metabolómica , Receptores Citoplasmáticos y Nucleares/metabolismo , Acetilcoenzima A/metabolismo , Adenoviridae/genética , Aminoácidos/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Receptor de Androstano Constitutivo , Expresión Génica , Vectores Genéticos , Células Hep G2 , Factor Nuclear 4 del Hepatocito/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Receptores Citoplasmáticos y Nucleares/genética , Transfección
10.
Arch Toxicol ; 87(5): 883-94, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23224291

RESUMEN

Freshly established cultures of primary hepatocytes progressively adopt a foetal-like phenotype and display increased production of connexin43. The latter is a multifaceted cellular entity with variable subcellular locations, including the mitochondrial compartment. Cx43 forms hemichannels and gap junctions that are involved in a plethora of physiological and pathological processes, such as apoptosis. The present study was conducted with the goal of shedding more light onto the role of connexin43 in primary hepatocyte cultures. Connexin43 expression was suppressed by means of RNA interference technology, and the overall outcome of this treatment on the hepatocellular proteome and metabolome was investigated using tandem mass tag-based differential protein profiling and (1)H NMR spectroscopy, respectively. Global protein profiling revealed a number of targets of the connexin43 knock-down procedure, including mitochondrial proteins (heat shock protein 60, glucose-regulated protein 75, thiosulphate sulphurtransferase and adenosine triphosphate synthase) and detoxifying enzymes (glutathione S-transferase µ 2 and cytochrome P450 2C70). At the metabolomic level, connexin43 silencing caused no overt changes, though there was some evidence for a subtle increase in intracellular glycine quantities. Collectively, these data could further substantiate the established existence of a mitochondrial connexin pool and could be reconciled with the previously reported involvement of connexin43 signalling in spontaneously occurring apoptosis in primary hepatocyte cultures.


Asunto(s)
Conexina 43/genética , Silenciador del Gen , Hepatocitos/metabolismo , Metabolómica , Proteómica , Animales , Animales no Consanguíneos , Biomarcadores/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Masculino , Mitocondrias Hepáticas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Espectrometría de Masas en Tándem
11.
J Cheminform ; 15(1): 31, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864534

RESUMEN

Protein mutations, especially those which occur in the binding site, play an important role in inter-individual drug response and may alter binding affinity and thus impact the drug's efficacy and side effects. Unfortunately, large-scale experimental screening of ligand-binding against protein variants is still time-consuming and expensive. Alternatively, in silico approaches can play a role in guiding those experiments. Methods ranging from computationally cheaper machine learning (ML) to the more expensive molecular dynamics have been applied to accurately predict the mutation effects. However, these effects have been mostly studied on limited and small datasets, while ideally a large dataset of binding affinity changes due to binding site mutations is needed. In this work, we used the PSnpBind database with six hundred thousand docking experiments to train a machine learning model predicting protein-ligand binding affinity for both wild-type proteins and their variants with a single-point mutation in the binding site. A numerical representation of the protein, binding site, mutation, and ligand information was encoded using 256 features, half of them were manually selected based on domain knowledge. A machine learning approach composed of two regression models is proposed, the first predicting wild-type protein-ligand binding affinity while the second predicting the mutated protein-ligand binding affinity. The best performing models reported an RMSE value within 0.5 [Formula: see text] 0.6 kcal/mol-1 on an independent test set with an R2 value of 0.87 [Formula: see text] 0.90. We report an improvement in the prediction performance compared to several reported models developed for protein-ligand binding affinity prediction. The obtained models can be used as a complementary method in early-stage drug discovery. They can be applied to rapidly obtain a better overview of the ligand binding affinity changes across protein variants carried by people in the population and narrow down the search space where more time-demanding methods can be used to identify potential leads that achieve a better affinity for all protein variants.

12.
Sci Rep ; 13(1): 3906, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890261

RESUMEN

Receptor diffusion plays an essential role in cellular signalling via the plasma membrane microenvironment and receptor interactions, but the regulation is not well understood. To aid in understanding of the key determinants of receptor diffusion and signalling, we developed agent-based models (ABMs) to explore the extent of dimerisation of the platelet- and megakaryocyte-specific receptor for collagen glycoprotein VI (GPVI). This approach assessed the importance of glycolipid enriched raft-like domains within the plasma membrane that lower receptor diffusivity. Our model simulations demonstrated that GPVI dimers preferentially concentrate in confined domains and, if diffusivity within domains is decreased relative to outside of domains, dimerisation rates are increased. While an increased amount of confined domains resulted in further dimerisation, merging of domains, which may occur upon membrane rearrangements, was without effect. Modelling of the proportion of the cell membrane which constitutes lipid rafts indicated that dimerisation levels could not be explained by these alone. Crowding of receptors by other membrane proteins was also an important determinant of GPVI dimerisation. Together, these results demonstrate the value of ABM approaches in exploring the interactions on a cell surface, guiding the experimentation for new therapeutic avenues.


Asunto(s)
Plaquetas , Glicoproteínas de Membrana Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Colágeno/metabolismo , Microdominios de Membrana/metabolismo
13.
Cell Calcium ; 112: 102738, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060673

RESUMEN

In platelets, elevated cytosolic Ca2+ is a crucial second messenger, involved in most functional responses, including shape change, secretion, aggregation and procoagulant activity. The platelet Ca2+ response consists of Ca2+ mobilization from endoplasmic reticulum stores, complemented with store-operated or receptor-operated Ca2+ entry pathways. Several channels can contribute to the Ca2+ entry, but their relative contribution is unclear upon stimulation of ITAM-linked receptors such as glycoprotein VI (GPVI) and G-protein coupled receptors such as the protease-activated receptors (PAR) for thrombin. We employed a 96-well plate high-throughput assay with Fura-2-loaded human platelets to perform parallel [Ca2+]i measurements in the presence of EGTA or CaCl2. Per agonist condition, this resulted in sets of EGTA, CaCl2 and Ca2+ entry ratio curves, defined by six parameters, reflecting different Ca2+ ion fluxes. We report that threshold stimulation of GPVI or PAR, with a variable contribution of secondary mediators, induces a maximal Ca2+ entry ratio of 3-7. Strikingly, in combination with Ca2+-ATPase inhibition by thapsigargin, the maximal Ca2+ entry ratio increased to 400 (GPVI) or 40 (PAR), pointing to a strong receptor-dependent enhancement of store-operated Ca2+ entry. By pharmacological blockage of specific Ca2+ channels in platelets, we found that, regardless of GPVI or PAR stimulation, the Ca2+ entry ratio was strongest affected by inhibition of ORAI1 (2-APB, Synta66) > Na+/Ca2+ exchange (NCE) > P2×1 (only initial). In contrast, inhibition of TRPC6, Piezo1/2 or STIM1 was without effect. Together, these data reveal ORAI1 and NCE as dominating Ca2+ carriers regulating GPVI- and PAR-induced Ca2+ entry in human platelets.


Asunto(s)
Plaquetas , Canales de Calcio , Humanos , Plaquetas/metabolismo , Canales de Calcio/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/farmacología , Cloruro de Calcio/farmacología , Ácido Egtácico/metabolismo , Señalización del Calcio , Receptores Acoplados a Proteínas G/metabolismo , Calcio/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Proteína ORAI1/metabolismo , Canales Iónicos/metabolismo
14.
Atherosclerosis ; 384: 117123, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37127497

RESUMEN

BACKGROUND AND AIMS: This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS: We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS: We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Masculino , Femenino , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Caracteres Sexuales , Interleucina-4 , Citocinas/metabolismo , Transducción de Señal
15.
PLoS One ; 18(11): e0292030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38032940

RESUMEN

The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug. However, relating the results of animal and in vitro studies to relevant clinical outcomes for the human in vivo situation still proves challenging. In this study, we incorporate principles of transfer learning within a deep artificial neural network allowing us to leverage the relative abundance of rat in vitro and in vivo exposure data from the Open TG-GATEs data set to train a model to predict the expected pattern of human in vivo gene expression following an exposure given measured human in vitro gene expression. We show that domain adaptation has been successfully achieved, with the rat and human in vitro data no longer being separable in the common latent space generated by the network. The network produces physiologically plausible predictions of human in vivo gene expression pattern following an exposure to a previously unseen compound. Moreover, we show the integration of the human in vitro data in the training of the domain adaptation network significantly improves the temporal accuracy of the predicted rat in vivo gene expression pattern following an exposure to a previously unseen compound. In this way, we demonstrate the improvements in prediction accuracy that can be achieved by combining data from distinct domains.


Asunto(s)
Hígado , Redes Neurales de la Computación , Humanos , Ratas , Animales , Aprendizaje , Aprendizaje Automático , Expresión Génica
16.
Bioinformatics ; 27(20): 2917-8, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21893519

RESUMEN

SUMMARY: Pathway-level analysis is a powerful approach enabling interpretation of post-genomic data at a higher level than that of individual biomolecules. Yet, it is currently hard to integrate more than one type of omics data in such an approach. Here, we present a web tool 'IMPaLA' for the joint pathway analysis of transcriptomics or proteomics and metabolomics data. It performs over-representation or enrichment analysis with user-specified lists of metabolites and genes using over 3000 pre-annotated pathways from 11 databases. As a result, pathways can be identified that may be disregulated on the transcriptional level, the metabolic level or both. Evidence of pathway disregulation is combined, allowing for the identification of additional pathways with changed activity that would not be highlighted when analysis is applied to any of the functional levels alone. The tool has been implemented both as an interactive website and as a web service to allow a programming interface. AVAILABILITY: The web interface of IMPaLA is available at http://impala.molgen.mpg.de. A web services programming interface is provided at http://impala.molgen.mpg.de/wsdoc. CONTACT: kamburov@molgen.mpg.de; r.cavill@imperial.ac.uk; h.keun@imperial.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Metabolómica/métodos , Programas Informáticos , Bases de Datos Factuales , Internet , Proteómica/métodos
17.
PLoS Comput Biol ; 7(3): e1001113, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21483477

RESUMEN

Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/metabolismo , Transcripción Genética , Biomarcadores/química , Carboplatino/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Biología Computacional/métodos , Ensayos de Selección de Medicamentos Antitumorales , Reacciones Falso Positivas , Humanos , Lipoproteínas/metabolismo , Metabolómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Organoplatinos/farmacología , Fenotipo
18.
J Cheminform ; 14(1): 8, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227289

RESUMEN

A key concept in drug design is how natural variants, especially the ones occurring in the binding site of drug targets, affect the inter-individual drug response and efficacy by altering binding affinity. These effects have been studied on very limited and small datasets while, ideally, a large dataset of binding affinity changes due to binding site single-nucleotide polymorphisms (SNPs) is needed for evaluation. However, to the best of our knowledge, such a dataset does not exist. Thus, a reference dataset of ligands binding affinities to proteins with all their reported binding sites' variants was constructed using a molecular docking approach. Having a large database of protein-ligand complexes covering a wide range of binding pocket mutations and a large small molecules' landscape is of great importance for several types of studies. For example, developing machine learning algorithms to predict protein-ligand affinity or a SNP effect on it requires an extensive amount of data. In this work, we present PSnpBind: A large database of 0.6 million mutated binding site protein-ligand complexes constructed using a multithreaded virtual screening workflow. It provides a web interface to explore and visualize the protein-ligand complexes and a REST API to programmatically access the different aspects of the database contents. PSnpBind is open source and freely available at https://psnpbind.org .

19.
NPJ Parkinsons Dis ; 8(1): 150, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344548

RESUMEN

Cognitive impairment is a debilitating symptom in Parkinson's disease (PD). We aimed to establish an accurate multivariate machine learning (ML) model to predict cognitive outcome in newly diagnosed PD cases from the Parkinson's Progression Markers Initiative (PPMI). Annual cognitive assessments over an 8-year time span were used to define two cognitive outcomes of (i) cognitive impairment, and (ii) dementia conversion. Selected baseline variables were organized into three subsets of clinical, biofluid and genetic/epigenetic measures and tested using four different ML algorithms. Irrespective of the ML algorithm used, the models consisting of the clinical variables performed best and showed better prediction of cognitive impairment outcome over dementia conversion. We observed a marginal improvement in the prediction performance when clinical, biofluid, and epigenetic/genetic variables were all included in one model. Several cerebrospinal fluid measures and an epigenetic marker showed high predictive weighting in multiple models when included alongside clinical variables.

20.
Sci Rep ; 11(1): 12358, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117303

RESUMEN

Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome-wide transcriptomes (57.8 k mRNAs). For 14.8 k protein-coding transcripts, we assigned the proteins to 21 UniProt-based classes, based on their preferential intracellular localization and presumed function. This classified transcriptome-proteome profile of platelets revealed: (i) Absence of 37.2 k genome-wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein-coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43-0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identified proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma-derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identified proteome of nuclear-related, membrane and signaling proteins, as well proteins with low-level transcripts. We then constructed a prediction model, based on protein function, transcript level and (peri)nuclear localization, and calculated the achievable proteome at ~ 10 k proteins. Model validation identified 1.0 k additional proteins in the predicted classes. Network and database analysis revealed the presence of 2.4 k proteins with a possible role in thrombosis and hemostasis, and 138 proteins linked to platelet-related disorders. This genome-wide platelet transcriptome and (non)identified proteome database thus provides a scaffold for discovering the roles of unknown platelet proteins in health and disease.


Asunto(s)
Plaquetas/metabolismo , Enfermedades Hematológicas/genética , Megacariocitos/metabolismo , Proteoma/genética , Transcriptoma , Humanos , Anotación de Secuencia Molecular , Proteoma/clasificación , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA