Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 213, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737190

RESUMEN

BACKGROUND: Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS: To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS: Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION: IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.


Asunto(s)
Encefalitis Transmitida por Garrapatas , Factor 7 Regulador del Interferón , Interferón Tipo I , Animales , Ratones , Anticuerpos , Astrocitos , Sistema Nervioso Central , Factor 7 Regulador del Interferón/genética , Encefalitis Transmitida por Garrapatas/inmunología
2.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504602

RESUMEN

Tick-borne encephalitis virus (TBEV) is primarily transmitted to humans through tick bites or oral consumption of accordingly contaminated unpasteurized milk or milk products. The detection of TBEV RNA in various body fluids in immunosuppressed human patients is documented. However, the risk of direct contact exposure remains unclear. Interferon-alpha receptor-1 deficient (Ifnar1-/- ) mice, which are lacking the interferon-α/ß responses, develop neurologic manifestations after infection with TBEV and Langat virus (LGTV). We showed that subcutaneous, intranasal, and peroral infection of LGTV lead to disease, whereas mice with intragastric application of LGTV showed no disease signs. With LGTV infected mice exhibit seroconversion and significant viral RNA levels was detected in saliva, eye smear, feces and urine. As a result, TBEV and LGTV are transmitted between mice from infected to naïve co-caged sentinel animals. Although intranasal inoculation of LGTV is entirely sufficient to establish the disease in mice, the virus is not transmitted by aerosols. These pooled results from animal models highlight the risks of exposure to TBEV contaminants and the possibility for close contact transmission of TBEV in interferon-alpha receptor-1 deficient laboratory mice.Importance Tick-borne encephalitis is a severe disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). Every year between 10,000-12,000 people become infected with this flavivirus. The TBEV is usually transmitted to humans via the bite of a tick, but infections due to consumption of infectious milk products are increasingly being reported. Since there is no therapy for an TBEV infection and mechanisms of virus persistence in reservoir animals are unclear, it is important to highlight the risk of exposure to TBEV contaminants and know possible routes of transmission of this virus. The significance of our research is in identifying other infection routes of TBEV and LGTV, and the possibility of close contact transmission.

3.
Front Aging Neurosci ; 16: 1429005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149145

RESUMEN

The cGAS-STING pathway is a pivotal element of the innate immune system, recognizing cytosolic DNA to initiate the production of type I interferons and pro-inflammatory cytokines. This study investigates the alterations of the cGAS-STING signaling components in the cortex and hippocampus of mice aged 24 and 108 weeks. In the cortex of old mice, an increase in the dsDNA sensor protein cGAS and its product 2'3'-cGAMP was observed, without corresponding activation of downstream signaling, suggesting an uncoupling of cGAS activity from STING activation. This phenomenon may be attributed to increased dsDNA concentrations in the EC neurons, potentially arising from nuclear DNA damage. Contrastingly, the hippocampus did not exhibit increased cGAS activity with aging, but there was a notable elevation in STING levels, particularly in microglia, neurons and astrocytes. This increase in STING did not correlate with enhanced IRF3 activation, indicating that brain inflammation induced by the cGAS-STING pathway may manifest extremely late in the aging process. Furthermore, we highlight the role of autophagy and its interplay with the cGAS-STING pathway, with evidence of autophagy dysfunction in aged hippocampal neurons leading to STING accumulation. These findings underscore the complexity of the cGAS-STING pathway's involvement in brain aging, with regional variations in activity and potential implications for neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA