Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(38): 11771-6, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26351686

RESUMEN

Maturation of cytochrome oxidases is a complex process requiring assembly of several subunits and adequate uptake of the metal cofactors. Two orthologous Sco proteins (Sco1 and Sco2) are essential for the correct assembly of the dicopper CuA site in the human oxidase, but their function is not fully understood. Here, we report an in vitro biochemical study that shows that Sco1 is a metallochaperone that selectively transfers Cu(I) ions based on loop recognition, whereas Sco2 is a copper-dependent thiol reductase of the cysteine ligands in the oxidase. Copper binding to Sco2 is essential to elicit its redox function and as a guardian of the reduced state of its own cysteine residues in the oxidizing environment of the mitochondrial intermembrane space (IMS). These results provide a detailed molecular mechanism for CuA assembly, suggesting that copper and redox homeostasis are intimately linked in the mitochondrion.


Asunto(s)
Cobre/metabolismo , Disulfuros/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Transporte de Electrón , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Espectroscopía de Protones por Resonancia Magnética , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
2.
Proc Natl Acad Sci U S A ; 108(12): 4811-6, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383138

RESUMEN

Oxidative protein folding in the mitochondrial intermembrane space requires the transfer of a disulfide bond from MIA40 to the substrate. During this process MIA40 is reduced and regenerated to a functional state through the interaction with the flavin-dependent sulfhydryl oxidase ALR. Here we present the mechanistic basis of ALR-MIA40 interaction at atomic resolution by biochemical and structural analyses of the mitochondrial ALR isoform and its covalent mixed disulfide intermediate with MIA40. This ALR isoform contains a folded FAD-binding domain at the C-terminus and an unstructured, flexible N-terminal domain, weakly and transiently interacting one with the other. A specific region of the N-terminal domain guides the interaction with the MIA40 substrate binding cleft (mimicking the interaction of the substrate itself), without being involved in the import of ALR. The hydrophobicity-driven binding of this region ensures precise protein-protein recognition needed for an efficient electron transfer process.


Asunto(s)
Reductasas del Citocromo/química , Flavina-Adenina Dinucleótido/química , Proteínas de Transporte de Membrana Mitocondrial/química , Sitios de Unión , Reductasas del Citocromo/metabolismo , Transporte de Electrón/fisiología , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Estructura Terciaria de Proteína , Especificidad por Sustrato/fisiología
3.
Proc Natl Acad Sci U S A ; 107(47): 20190-5, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059946

RESUMEN

Several proteins of the mitochondrial intermembrane space are targeted by internal targeting signals. A class of such proteins with α-helical hairpin structure bridged by two intramolecular disulfides is trapped by a Mia40-dependent oxidative process. Here, we describe the oxidative folding mechanism underpinning this process by an exhaustive structural characterization of the protein in all stages and as a complex with Mia40. Two consecutive induced folding steps are at the basis of the protein-trapping process. In the first one, Mia40 functions as a molecular chaperone assisting α-helical folding of the internal targeting signal of the substrate. Subsequently, in a Mia40-independent manner, folding of the second substrate helix is induced by the folded targeting signal functioning as a folding scaffold. The Mia40-induced folding pathway provides a proof of principle for the general concept that internal targeting signals may operate as a folding nucleus upon compartment-specific activation.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Pliegue de Proteína , Transporte de Proteínas/fisiología , Proteínas Portadoras/química , Proteínas Transportadoras de Cobre , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Químicos , Chaperonas Moleculares/química , Complejos Multiproteicos/química , Resonancia Magnética Nuclear Biomolecular
4.
J Biol Chem ; 286(39): 34382-90, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21816817

RESUMEN

Human Cox17 is the mitochondrial copper chaperone responsible for supplying copper ions, through the assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase, the terminal enzyme of the mitochondrial energy-transducing respiratory chain. It consists of a coiled coil-helix-coiled coil-helix domain stabilized by two disulfide bonds and binds one copper(I) ion through a Cys-Cys motif. Here, the structures and the backbone mobilities of two Cox17 mutated forms with only one interhelical disulfide bond have been analyzed. It appears that the inner disulfide bond (formed by Cys-36 and Cys-45) stabilizes interhelical hydrophobic interactions, providing a structure with essentially the same structural dynamic properties of the mature Cox17 state. On the contrary, the external disulfide bond (formed by Cys-26 and Cys-55) generates a conformationally flexible α-helical protein, indicating that it is not able to stabilize interhelical packing contacts, but is important for structurally organizing the copper-binding site region.


Asunto(s)
Proteínas Portadoras/química , Disulfuros/química , Sitios de Unión , Proteínas Portadoras/metabolismo , Cobre/química , Cobre/metabolismo , Proteínas Transportadoras de Cobre , Disulfuros/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
5.
J Am Chem Soc ; 134(3): 1442-5, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22224850

RESUMEN

The oxidative folding mechanism in the intermembrane space of human mitochondria underpins a disulfide relay system consisting of the import receptor Mia40 and the homodimeric FAD-dependent thiol oxidase ALR. The flavoprotein ALR receives two electrons per subunit from Mia40, which are then donated through one-electron reactions to two cytochrome c molecules, thus mediating a switch from two-electron to one-electron transfer. We dissect here the mechanism of the electron flux within ALR, characterizing at the atomic level the ALR intermediates that allow electrons to rapidly flow to cytochrome c. The intermediate critical for the electron-transfer process implies the formation of a specific inter-subunit disulfide which exclusively allows electron flow from Mia40 to FAD. This finding allows us to present a complete model for the electron-transfer pathway in ALR.


Asunto(s)
Reductasas del Citocromo/metabolismo , Citocromos c/metabolismo , Disulfuros/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Dicroismo Circular , Reductasas del Citocromo/química , Citocromos c/química , Disulfuros/química , Transporte de Electrón , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Espectrofotometría Ultravioleta
6.
J Mol Biol ; 425(3): 594-608, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23207295

RESUMEN

The functional role of unstructured protein domains is an emerging field in the frame of intrinsically disordered proteins. The involvement of intrinsically disordered domains (IDDs) in protein targeting and biogenesis processes in mitochondria is so far not known. Here, we have characterized the structural/dynamic and functional properties of an IDD of the sulfhydryl oxidase ALR (augmenter of liver regeneration) located in the intermembrane space of mitochondria. At variance to the unfolded-to-folded structural transition of several intrinsically disordered proteins, neither substrate recognition events nor redox switch of its shuttle cysteine pair is linked to any such structural change. However, this unstructured domain performs a dual function in two cellular compartments: it acts (i) as a mitochondrial targeting signal in the cytosol and (ii) as a crucial recognition site in the disulfide relay system of intermembrane space. This domain provides an exciting new paradigm for IDDs ensuring two distinct functions that are linked to intracellular organelle targeting.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Conformación Proteica , Saccharomyces cerevisiae/enzimología
7.
ACS Chem Biol ; 7(4): 707-14, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22296668

RESUMEN

The interaction of Mia40 with Erv1/ALR is central to the oxidative protein folding in the intermembrane space of mitochondria (IMS) as Erv1/ALR oxidizes reduced Mia40 to restore its functional state. Here we address the role of Mia40 in the import and maturation of Erv1/ALR. The C-terminal FAD-binding domain of Erv1/ALR has an essential role in the import process by creating a transient intermolecular disulfide bond with Mia40. The action of Mia40 is selective for the formation of both intra and intersubunit structural disulfide bonds of Erv1/ALR, but the complete maturation process requires additional binding of FAD. Both of these events must follow a specific sequential order to allow Erv1/ALR to reach the fully functional state, illustrating a new paradigm for protein maturation in the IMS.


Asunto(s)
Reductasas del Citocromo/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Membranas Mitocondriales/metabolismo , Disulfuros , Humanos , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Pliegue de Proteína , Transporte de Proteínas
8.
Nat Struct Mol Biol ; 16(2): 198-206, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19182799

RESUMEN

MIA40 has a key role in oxidative protein folding in the mitochondrial intermembrane space. We present the solution structure of human MIA40 and its mechanism as a catalyst of oxidative folding. MIA40 has a 66-residue folded domain made of an alpha-helical hairpin core stabilized by two structural disulfides and a rigid N-terminal lid, with a characteristic CPC motif that can donate its disulfide bond to substrates. The CPC active site is solvent-accessible and sits adjacent to a hydrophobic cleft. Its second cysteine (Cys55) is essential in vivo and is crucial for mixed disulfide formation with the substrate. The hydrophobic cleft functions as a substrate binding domain, and mutations of this domain are lethal in vivo and abrogate binding in vitro. MIA40 represents a thioredoxin-unrelated, minimal oxidoreductase, with a facile CPC redox active site that ensures its catalytic function in oxidative folding in mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencia de Aminoácidos , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Conformación Proteica , Pliegue de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA