Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO J ; 42(4): e112118, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594367

RESUMEN

Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.


Asunto(s)
Células Ciliadas Auditivas Internas , Transducción de Señal , Animales , Células Ciliadas Auditivas Internas/fisiología , Potenciales de Acción/fisiología , Cóclea/fisiología , Mamíferos
2.
J Physiol ; 601(19): 4375-4395, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37715703

RESUMEN

Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.


Asunto(s)
Calcio , Pérdida Auditiva , Humanos , Ratones , Animales , Anciano , Lactante , Calcio/metabolismo , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2Y , Receptores Purinérgicos P2Y2 , Receptores Purinérgicos P2Y1 , Adenosina Trifosfato/fisiología , Mamíferos/metabolismo
3.
J Physiol ; 601(19): 4291-4308, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37642186

RESUMEN

Cochlear outer hair cells (OHCs) are responsible for the exquisite frequency selectivity and sensitivity of mammalian hearing. During development, the maturation of OHC afferent connectivity is refined by coordinated spontaneous Ca2+ activity in both sensory and non-sensory cells. Calcium signalling in neonatal OHCs can be modulated by oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein. Here, we investigated whether OCM regulates OHC spontaneous Ca2+ activity and afferent connectivity during development. Using a genetically encoded Ca2+ sensor (GCaMP6s) expressed in OHCs in wild-type (Ocm+/+ ) and Ocm knockout (Ocm-/- ) littermates, we found increased spontaneous Ca2+ activity and upregulation of purinergic receptors in OHCs from Ocm-/- cochlea immediately following birth. The afferent synaptic maturation of OHCs was delayed in the absence of OCM, leading to an increased number of ribbon synapses and afferent fibres on Ocm-/- OHCs before hearing onset. We propose that OCM regulates the spontaneous Ca2+ signalling in the developing cochlea and the maturation of OHC afferent innervation. KEY POINTS: Cochlear outer hair cells (OHCs) exhibit spontaneous Ca2+ activity during a narrow period of neonatal development. OHC afferent maturation and connectivity requires spontaneous Ca2+ activity. Oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein, modulates Ca2+ signals in immature OHCs. Using transgenic mice that endogenously expressed a Ca2+ sensor, GCaMP6s, we found increased spontaneous Ca2+ activity and upregulated purinergic receptors in Ocm-/- OHCs. The maturation of afferent synapses in Ocm-/- OHCs was also delayed, leading to an upregulation of ribbon synapses and afferent fibres in Ocm-/- OHCs before hearing onset. We propose that OCM plays an important role in modulating Ca2+ activity, expression of Ca2+ channels and afferent innervation in developing OHCs.


Asunto(s)
Calcio , Células Ciliadas Auditivas Externas , Ratones , Animales , Células Ciliadas Auditivas Externas/fisiología , Calcio/metabolismo , Parvalbúminas/metabolismo , Cóclea/fisiología , Proteínas de Unión al Calcio/metabolismo , Ratones Transgénicos , Receptores Purinérgicos/metabolismo , Mamíferos/metabolismo
4.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30804003

RESUMEN

Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine-tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non-sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non-sensory cells of the greater epithelial ridge cause, via ATP-induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience-independent Ca2+ signals from sensory and non-sensory cells.


Asunto(s)
Vías Aferentes , Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Cóclea/fisiología , Conexina 30/fisiología , Células Ciliadas Auditivas Externas/fisiología , Células Receptoras Sensoriales/fisiología , Potenciales de Acción , Animales , Señalización del Calcio , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores Purinérgicos P2X3/fisiología , Sinapsis/fisiología
5.
J Physiol ; 599(15): 3677-3696, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34047358

RESUMEN

KEY POINTS: The present study aimed to determine the sensory adaptation characteristics of hair cell ribbon synapses in vivo. Hair cells of the zebrafish lateral line transmit hydrodynamic stimuli to the posterior lateral line ganglion afferent neurons. Excitatory hair bundle deflections by water-jet stimuli cause glutamate release at hair cell synapses with a rapid (phasic) and a sustained component, which are likely linked to the exocytosis of distinct vesicle pools. The glutamate-induced increase in afferent neuron firing rate adapts over time, which is mirrored by the depression of neurotransmitter release, without preventing phase-locking. Adaptation also occurs during inhibitory hair bundle displacements, highlighting a shift in the sensitivity range of the lateral line during prolonged stimulation. Postsynaptic mechanisms exert some degree of regulation on the afferent firing adaptation. We conclude that vesicle depletion is the primary determinant of firing rate adaptation, allowing lateral line hair cell ribbon synapses to maintain sensitivity to sustained stimuli. ABSTRACT: Adaptation is used by sensory systems to adjust continuously their sensitivity to match changes in environmental stimuli. In the auditory and vestibular systems, the release properties of glutamate-containing vesicles at the hair cell ribbon synapses play a crucial role in sensory adaptation, thus shaping the neural response to sustained stimulation. How ribbon synapses regulate the release of glutamate and how they modulate afferent responses in vivo is still largely unknown. Here, we have used two-photon imaging and electrophysiology to investigate the synaptic transfer characteristics of the hair cells in the context of sensory adaptation in live zebrafish. Prolonged and repeated water-jet stimulation of the hair cell stereociliary bundles caused adaptation of the action potential firing rate elicited in the afferent neurons. By monitoring glutamate at ribbon synapses using time-lapse imaging, we identified two kinetically distinct release components: a rapid response that was exhausted within 50-100 ms and a slower and sustained response lasting the entire stimulation. After repeated stimulations, the recovery of the fast component followed a biphasic time course. Depression of glutamate release was largely responsible for the rapid firing rate adaptation recorded in the afferent neurons. However, postsynaptic Ca2+ responses had a slower recovery time course compared to that of glutamate release, indicating that they are likely to contribute to the afferent firing adaptation. Hair cells also exhibited a form of adaptation during inhibitory bundle stimulations. We conclude that hair cells have optimised their synaptic machinery to encode prolonged stimuli and to maintain their sensitivity to new incoming stimuli.


Asunto(s)
Sistema de la Línea Lateral , Animales , Células Ciliadas Auditivas , Sinapsis , Transmisión Sináptica , Pez Cebra
6.
J Physiol ; 599(16): 3913-3936, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34143497

RESUMEN

KEY POINTS: We investigated hair-cell regeneration in the zebrafish lateral line following the application of the ototoxic compound copper. In early-larval zebrafish (<10 days post-fertilisation), regenerated hair cells drive action potentials (APs) in the afferent neurons 24 h post-copper treatment (24 hpt). Full regeneration of the early-larval neuromasts, the organs containing the hair cells, requires ∼48 h due to the progressive addition of hair cells and synaptic refinement. In older larval zebrafish, regenerated hair cells are active and drive afferent APs by 48 hpt, which is comparable to larvae, but the functional recovery of their neuromasts requires >120 hpt. Afferent terminals within the regenerating neuromast appear to initially contact supporting cells, and their complete ablation prevents the timely reappearance of supporting cells and hair cells. We conclude that the regeneration of zebrafish neuromasts is slower after the initial developmental stages, and that the afferent input plays a key role in driving this process. ABSTRACT: Hair cells are mechanosensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. Different from mammals, the hair cells of lower vertebrates, including those present in the neuromasts of the zebrafish lateral line, regenerate following environmental or chemical insults. Here we investigate the time course of regeneration of hair cells in vivo using electrophysiology, two-photon imaging and immunostaining applied to wild-type and genetically encoded fluorescent indicator zebrafish lines. Functional hair cells drive spontaneous action potentials in the posterior lateral line afferent fibres, the frequency of which progressively increases over the first 10 days post-fertilisation (dpf). Higher firing-rate fibres are only observed from ∼6 dpf. Following copper treatment, newly formed hair cells become functional and are able to drive APs in the afferent fibres within 48 h in both early-larval (≤8 dpf) and late-larval (12-17 dpf) zebrafish. However, the complete functional regeneration of the entire neuromast is delayed in late-larval compared to early-larval zebrafish. We propose that while individual regenerating hair cells can rapidly become active, the acquisition of fully functional neuromasts progresses faster at early-larval stages, a time when hair cells are still under development. At both ages, the afferent terminals in the regenerating neuromast appear to make initial contact with supporting cells. The ablation of the lateral line afferent neurons prevents the timely regeneration of supporting cells and hair cells. These findings indicate that the afferent system is likely to facilitate or promote the neuromast regeneration process.


Asunto(s)
Sistema de la Línea Lateral , Animales , Células Ciliadas Auditivas , Mecanorreceptores , Regeneración , Pez Cebra
7.
J Physiol ; 599(4): 1173-1198, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33151556

RESUMEN

KEY POINTS: Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT: The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.


Asunto(s)
Sordera , Proteínas de la Membrana , Estereocilios , Animales , Sordera/genética , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos
8.
J Physiol ; 598(19): 4339-4355, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32710572

RESUMEN

KEY POINTS: Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT: Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Internas , Envejecimiento , Animales , Cadherinas , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Sinapsis
9.
J Physiol ; 598(1): 151-170, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661723

RESUMEN

KEY POINTS: Outer hair cells (OHCs) enhance the sensitivity and the frequency tuning of the mammalian cochlea. Similar to the primary sensory receptor, the inner hair cells (IHCs), the mature functional characteristics of OHCs are acquired before hearing onset. We found that OHCs, like IHCs, fire spontaneous Ca2+ -induced action potentials (APs) during immature stages of development, which are driven by CaV 1.3 Ca2+ channels. We also showed that the development of low- and high-frequency hair cells is differentially regulated during pre-hearing stages, with the former cells being more strongly dependent on experience-independent Ca2+ action potential activity. ABSTRACT: Sound amplification within the mammalian cochlea depends upon specialized hair cells, the outer hair cells (OHCs), which possess both sensory and motile capabilities. In various altricial rodents, OHCs become functionally competent from around postnatal day 7 (P7), before the primary sensory inner hair cells (IHCs), which become competent at about the onset of hearing (P12). The mechanisms responsible for the maturation of OHCs and their synaptic specialization remain poorly understood. We report that spontaneous Ca2+ activity in the immature cochlea, which is generated by CaV 1.3 Ca2+ channels, differentially regulates the maturation of hair cells along the cochlea. Under near-physiological recording conditions we found that, similar to IHCs, immature OHCs elicited spontaneous Ca2+ action potentials (APs), but only during the first few postnatal days. Genetic ablation of these APs in vivo, using CaV 1.3-/- mice, prevented the normal developmental acquisition of mature-like basolateral membrane currents in low-frequency (apical) hair cells, such as IK,n (carried by KCNQ4 channels), ISK2 and IACh (α9α10nAChRs) in OHCs and IK,n and IK,f (BK channels) in IHCs. Electromotility and prestin expression in OHCs were normal in CaV 1.3-/- mice. The maturation of high-frequency (basal) hair cells was also affected in CaV 1.3-/- mice, but to a much lesser extent than apical cells. However, a characteristic feature in CaV 1.3-/- mice was the reduced hair cell size irrespective of their cochlear location. We conclude that the development of low- and high-frequency hair cells is differentially regulated during development, with apical cells being more strongly dependent on experience-independent Ca2+ APs.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas Externas/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Células Ciliadas Auditivas Internas/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio , Ratones , Ratones Noqueados
10.
J Physiol ; 597(13): 3389-3406, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31069810

RESUMEN

KEY POINTS: The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells; in contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. ABSTRACT: The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome arises from functional deficits in IHCs as well as loss of function from OHCs and both afferent and efferent neurons.


Asunto(s)
Cóclea/metabolismo , Cóclea/fisiología , Factor de Transcripción GATA3/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Animales , Diferenciación Celular/fisiología , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiología , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/fisiología , Audición/fisiología , Pérdida Auditiva/metabolismo , Pérdida Auditiva/fisiopatología , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Ratones Transgénicos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Sinapsis/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(46): E7194-E7201, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807138

RESUMEN

Spatially and temporally coordinated variations of the cytosolic free calcium concentration ([Ca2+]c) play a crucial role in a variety of tissues. In the developing sensory epithelium of the mammalian cochlea, elevation of extracellular adenosine trisphosphate concentration ([ATP]e) triggers [Ca2+]c oscillations and propagation of intercellular inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ waves. What remains uncertain is the relative contribution of gap junction channels and connexin hemichannels to these fundamental mechanisms, defects in which impair hearing acquisition. Another related open question is whether [Ca2+]c oscillations require oscillations of the cytosolic IP3 concentration ([IP3]c) in this system. To address these issues, we performed Ca2+ imaging experiments in the lesser epithelial ridge of the mouse cochlea around postnatal day 5 and constructed a computational model in quantitative adherence to experimental data. Our results indicate that [Ca2+]c oscillations are governed by Hopf-type bifurcations within the experimental range of [ATP]e and do not require [IP3]c oscillations. The model replicates accurately the spatial extent and propagation speed of intercellular Ca2+ waves and predicts that ATP-induced ATP release is the primary mechanism underlying intercellular propagation of Ca2+ signals. The model also uncovers a discontinuous transition from propagating regimes (intercellular Ca2+ wave speed > 11 µm⋅s-1) to propagation failure (speed = 0), which occurs upon lowering the maximal ATP release rate below a minimal threshold value. The approach presented here overcomes major limitations due to lack of specific connexin channel inhibitors and can be extended to other coupled cellular systems.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Modelos Biológicos , Animales , Animales Recién Nacidos , Ratones
12.
J Neurosci ; 37(2): 258-268, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077706

RESUMEN

Mutations in the genes encoding for gap junction proteins connexin 26 (Cx26) and connexin 30 (Cx30) have been linked to syndromic and nonsyndromic hearing loss in mice and humans. The release of ATP from connexin hemichannels in cochlear nonsensory cells has been proposed to be the main trigger for action potential activity in immature sensory inner hair cells (IHCs), which is crucial for the refinement of the developing auditory circuitry. Using connexin knock-out mice, we show that IHCs fire spontaneous action potentials even in the absence of ATP-dependent intercellular Ca2+ signaling in the nonsensory cells. However, this signaling from nonsensory cells was able to increase the intrinsic IHC firing frequency. We also found that connexin expression is key to IHC functional maturation. In Cx26 conditional knock-out mice (Cx26Sox10-Cre), the maturation of IHCs, which normally occurs at approximately postnatal day 12, was partially prevented. Although Cx30 has been shown not to be required for hearing in young adult mice, IHCs from Cx30 knock-out mice exhibited a comprehensive brake in their development, such that their basolateral membrane currents and synaptic machinery retain a prehearing phenotype. We propose that IHC functional differentiation into mature sensory receptors is initiated in the prehearing cochlea provided that the expression of either connexin reaches a threshold level. As such, connexins regulate one of the most crucial functional refinements in the mammalian cochlea, the disruption of which contributes to the deafness phenotype observed in mice and DFNB1 patients. SIGNIFICANCE STATEMENT: The correct development and function of the mammalian cochlea relies not only on the sensory hair cells, but also on the surrounding nonsensory cells. Although the nonsensory cells have been largely implicated in the general homeostasis in the mature cochlea, their involvement in the initial functional differentiation of the sensory inner hair cells is less clear. Using mutant mouse models for the most common form of congenital deafness in humans, which are knock-outs for the gap-junction channels connexin 26 and connexin 30 genes, we show that defects in nonsensory cells prevented the functional maturation of inner hair cells. In connexin knock-outs, inner hair cells remained stuck at a prehearing stage of development and, as such, are unable to process sound information.


Asunto(s)
Cóclea/crecimiento & desarrollo , Conexinas/fisiología , Células Ciliadas Auditivas Internas/fisiología , Transducción de Señal/fisiología , Potenciales de Acción/fisiología , Animales , Conexina 26 , Conexina 30 , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
13.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948763

RESUMEN

In this paper, we introduce a new, open-source software developed in Python for analyzing Auditory Brainstem Response (ABR) waveforms. ABRs are a far-field recording of synchronous neural activity generated by the auditory fibers in the ear in response to sound, and used to study acoustic neural information traveling along the ascending auditory pathway. Common ABR data analysis practices are subject to human interpretation and are labor-intensive, requiring manual annotations and visual estimation of hearing thresholds. The proposed new Auditory Brainstem Response Analyzer (ABRA) software is designed to facilitate the analysis of ABRs by supporting batch data import/export, waveform visualization, and statistical analysis. Techniques implemented in this software include algorithmic peak finding, threshold estimation, latency estimation, time warping for curve alignment, and 3D plotting of ABR waveforms over stimulus frequencies and decibels. The excellent performance on a large dataset of ABR collected from three labs in the field of hearing research that use different experimental recording settings illustrates the efficacy, flexibility, and wide utility of ABRA.

14.
Cell Rep ; 43(4): 114025, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564333

RESUMEN

Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.


Asunto(s)
Cóclea , Audición , Densidad Postsináptica , Receptores AMPA , Receptores Acoplados a Proteínas G , Ganglio Espiral de la Cóclea , Animales , Receptores AMPA/metabolismo , Ratones , Ganglio Espiral de la Cóclea/metabolismo , Audición/fisiología , Cóclea/metabolismo , Densidad Postsináptica/metabolismo , Ratones Noqueados , Células Ciliadas Auditivas Internas/metabolismo , Ratones Endogámicos C57BL , Sinapsis/metabolismo
15.
Cell Commun Signal ; 11: 78, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24144139

RESUMEN

BACKGROUND: A variety of mechanisms that govern connexin channel gating and permeability regulate coupling in gap junction networks. Mutations in connexin genes have been linked to several pathologies, including cardiovascular anomalies, peripheral neuropathy, skin disorders, cataracts and deafness. Gap junction coupling and its patho-physiological alterations are commonly assayed by microinjection experiments with fluorescent tracers, which typically require several minutes to allow dye transfer to a limited number of cells. Comparable or longer time intervals are required by fluorescence recovery after photobleaching experiments. Paired electrophysiological recordings have excellent time resolution but provide extremely limited spatial information regarding network connectivity. RESULTS: Here, we developed a rapid and sensitive method to assay gap junction communication using a combination of single cell electrophysiology, large-scale optical recordings and a digital phase-sensitive detector to extract signals with a known frequency from Vf2.1.Cl, a novel fluorescent sensor of plasma membrane potential. Tests performed in HeLa cell cultures confirmed that suitably encoded Vf2.1.Cl signals remained confined within the network of cells visibly interconnected by fluorescently tagged gap junction channels. We used this method to visualize instantly intercellular connectivity over the whole field of view (hundreds of cells) in cochlear organotypic cultures from postnatal mice. A simple resistive network model reproduced accurately the spatial dependence of the electrical signals throughout the cellular network. Our data suggest that each pair of cochlear non-sensory cells of the lesser epithelial ridge is coupled by ~1500 gap junction channels, on average. Junctional conductance was reduced by 14% in cochlear cultures harboring the T5M mutation of connexin30, which induces a moderate hearing loss in connexin30T5M/T5M knock-in mice, and by 91% in cultures from connexin30-/- mice, which are profoundly deaf. CONCLUSIONS: Our methodology allows greater sensitivity (defined as the minimum magnitude of input signal required to produce a specified output signal having a specified signal-to-noise ratio) and better time resolution compared to classical tracer-based techniques. It permitted us to dynamically visualize intercellular connectivity down to the 10th order in non-sensory cell networks of the developing cochlea. We believe that our approach is of general interest and can be seamlessly extended to a variety of biological systems, as well as to other connexin-related disease conditions.


Asunto(s)
Cóclea/fisiología , Uniones Comunicantes/fisiología , Animales , Conexinas/genética , Conexinas/metabolismo , Colorantes Fluorescentes , Células HeLa , Humanos , Ratones , Técnicas de Placa-Clamp , Imagen de Colorante Sensible al Voltaje
16.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909575

RESUMEN

Cochlear outer hair cells (OHCs) are responsible for the exquisite frequency selectivity and sensitivity of mammalian hearing. During development, the maturation of OHC afferent connectivity is refined by coordinated spontaneous Ca 2+ activity in both sensory and non-sensory cells. Calcium signaling in neonatal OHCs can be modulated by Oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein. Here, we investigated whether OCM regulates OHC spontaneous Ca 2+ activity and afferent connectivity during development. Using a genetically encoded Ca 2+ sensor (GCaMP6s) expressed in OHCs in wild-type (Ocm +/+ ) and Ocm knockout (Ocm -/- ) littermates, we found increased spontaneous Ca 2+ activity and upregulation of purinergic receptors in OHCs from GCaMP6s Ocm -/- cochlea immediately following birth. The afferent synaptic maturation of OHCs was delayed in the absence of OCM, leading to an increased number of ribbon synapses and afferent fibers on GCaMP6s Ocm -/- OHCs before hearing onset. We propose that OCM regulates the spontaneous Ca 2+ signaling in the developing cochlea and the maturation of OHC afferent innervation.

17.
Cell Commun Signal ; 10(1): 20, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22788415

RESUMEN

Calcium ions (Ca2+) regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on the Ca2+ control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca2+ signalling in non-sensory cells of the developing cochlea.

18.
Cell Calcium ; 105: 102613, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35797824

RESUMEN

In cochlear outer hair cells (OHCs), a network of Ca2+ channels, pumps and Ca2+-binding proteins (CaBPs) regulates the localization, spread, and magnitude of free Ca2+ ions. During early postnatal development, OHCs express three prominent mobile EF-hand CaBPs: oncomodulin (OCM), α-parvalbumin (APV) and sorcin. We have previously shown that deletion of Ocm (Ocm-/-) gives rise to progressive cochlear dysfunction in young adult mice. Here, we show that changes in Ca2+ signaling begin early in postnatal development of Ocm-/- mice. While mutant OHCs exhibit normal electrophysiological profiles compared to controls, their intracellular Ca2+ signaling is altered. The onset of OCM expression at postnatal day 3 (P3) causes a developmental change in KCl-induced Ca2+ transients in OHCs and leads to slower KCl-induced Ca2+ transients than those elicited in cells from Ocm-/- littermates. We compared OCM buffering kinetics with other CaBPs in animal models and cultured cells. In a double knockout of Ocm and Apv (Ocm-/-;Apv-/-), mutant OHCs show even faster Ca2+ kinetics, suggesting that APV may also contribute to early postnatal Ca2+ signaling. In transfected HEK293T cells, OCM slows Ca2+ kinetics more so than either APV or sorcin. We conclude that OCM controls the intracellular Ca2+ environment by lowering the amount of freely available [Ca2+]i in OHCs and transfected HEK293T cells. We propose that OCM plays an important role in shaping the development of early OHC Ca2+ signals through its inimitable Ca2+ buffering capacity.


Asunto(s)
Señalización del Calcio , Células Ciliadas Auditivas Externas , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células HEK293 , Células Ciliadas Auditivas Externas/metabolismo , Humanos , Ratones , Parvalbúminas/metabolismo
19.
Mol Ther Methods Clin Dev ; 26: 355-370, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36034774

RESUMEN

The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.

20.
Nat Commun ; 9(1): 4015, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275467

RESUMEN

In the adult auditory organ, mechanoelectrical transducer (MET) channels are essential for transducing acoustic stimuli into electrical signals. In the absence of incoming sound, a fraction of the MET channels on top of the sensory hair cells are open, resulting in a sustained depolarizing current. By genetically manipulating the in vivo expression of molecular components of the MET apparatus, we show that during pre-hearing stages the MET current is essential for establishing the electrophysiological properties of mature inner hair cells (IHCs). If the MET current is abolished in adult IHCs, they revert into cells showing electrical and morphological features characteristic of pre-hearing IHCs, including the re-establishment of cholinergic efferent innervation. The MET current is thus critical for the maintenance of the functional properties of adult IHCs, implying a degree of plasticity in the mature auditory system in response to the absence of normal transduction of acoustic signals.


Asunto(s)
Potenciales de Acción/fisiología , Cóclea/inervación , Vías Eferentes/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Mecanotransducción Celular/fisiología , Animales , Vías Auditivas/citología , Vías Auditivas/metabolismo , Células Cultivadas , Colinérgicos/metabolismo , Cóclea/citología , Vías Eferentes/citología , Gerbillinae , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/metabolismo , Audición/fisiología , Mecanotransducción Celular/genética , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Estereocilios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA