Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 21(1): 119, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33874905

RESUMEN

BACKGROUND: Salinization damages the health of soil systems and reduces crop yields. Responses of microbial communities to salinized soils and their functional maintenance under high salt stress are valuable scientific problems. Meanwhile, the microbial community of the salinized soil in the plateau environment is less understood. Here, we applied metagenomics technology to reveal the structure and function of microorganisms in salinized soil of the Tibetan Plateau. RESULTS: The diversity of composition and function of microbial community in saline soil have changed significantly. The abundances of chemoautotrophic and acidophilic bacteria comprising Rhodanobacter, Acidobacterium, Candidatus Nitrosotalea, and Candidatus Koribacter were significantly higher in saline soil. The potential degradation of organic carbon in the saline soil, as well as the production of NO and N2O via denitrification, and the production of sulfate by sulfur oxidation were significantly higher than the non-saline soil. Both types of soils were rich in genes encoding resistance to environmental stresses (i.e., cold, ultraviolet light, and hypoxia in Tibetan Plateau). The resistance of the soil microbial communities to the saline environment is based on the absorption of K+ as the main mechanism, with cross-protection proteins and absorption buffer molecules as auxiliary mechanisms in our study area. Network analysis showed that functional group comprising chemoautotrophic and acidophilic bacteria had significant positive correlations with electrical conductivity and total sulfur, and significant negative correlations with the total organic carbon, pH, and available nitrogen. The soil moisture, pH, and electrical conductivity are likely to affect the bacterial carbon, nitrogen, and sulfur cycles. CONCLUSIONS: These results indicate that the specific environment of the Tibetan Plateau and salinization jointly shape the structure and function of the soil bacterial community, and that the bacterial communities respond to complex and harsh living conditions. In addition, environmental feedback probably exacerbates greenhouse gas emissions and accelerates the reduction in the soil pH. This study will provide insights into the microbial responses to soil salinization and the potential ecological risks in the special plateau environment.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodiversidad , Ambientes Extremos , Microbiota/genética , Microbiología del Suelo , Suelo/química , Estrés Fisiológico/fisiología , Bacterias/genética , Granjas , Metagenómica , Tolerancia a la Sal , Tibet
2.
Front Plant Sci ; 12: 773090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899800

RESUMEN

Sour or wild jujube fruits and dried seeds are popular food all over the world. In this study, we reported a high-quality genome assembly of sour jujube (Ziziphus jujuba Mill. var. spinosa), with a size of 406 Mbp and scaffold N50 of 30.3 Mbp, which experienced only γ hexaploidization event, without recent genome duplication. Population structure analysis identified four jujube subgroups (two domesticated ones, i.e., D1 in West China and D2 in East/SouthEast China, semi-wild, and wild), which underwent an evolutionary history of a significant decline of effective population size during the Last Glacial Period. The respective selection signatures of three subgroups were discovered, such as strong peaks on chromosomes #3 in D1, #1 in D2, and #4 in wild. Genes under the most significant selection on chromosomes #4 in wild were confirmed to be involved in fruit variations among jujube accessions, in transcriptomic analysis. Our study offered novel insights into the jujube population structure and domestication and provided valuable genomic resources for jujube improvement in stress response and fruit flavor in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA