Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 482, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135039

RESUMEN

Treatment-induced ototoxicity and accompanying hearing loss are a great concern associated with chemotherapeutic or antibiotic drug regimens. Thus, prophylactic cure or early treatment is desirable by local delivery to the inner ear. In this study, we examined a novel way of intratympanically delivered sustained nanoformulation by using crosslinked hybrid nanoparticle (cHy-NPs) in a thermoresponsive hydrogel i.e. thermogel that can potentially provide a safe and effective treatment towards the treatment-induced or drug-induced ototoxicity. The prophylactic treatment of the ototoxicity can be achieved by using two therapeutic molecules, Flunarizine (FL: T-type calcium channel blocker) and Honokiol (HK: antioxidant) co-encapsulated in the same delivery system. Here we investigated, FL and HK as cytoprotective molecules against cisplatin-induced toxic effects in the House Ear Institute - Organ of Corti 1 (HEI-OC1) cells and in vivo assessments on the neuromast hair cell protection in the zebrafish lateral line. We observed that cytotoxic protective effect can be enhanced by using FL and HK in combination and developing a robust drug delivery formulation. Therefore, FL-and HK-loaded crosslinked hybrid nanoparticles (FL-cHy-NPs and HK-cHy-NPs) were synthesized using a quality-by-design approach (QbD) in which design of experiment-central composite design (DoE-CCD) following the standard least-square model was used for nanoformulation optimization. The physicochemical characterization of FL and HK loaded-NPs suggested the successful synthesis of spherical NPs with polydispersity index < 0.3, drugs encapsulation (> 75%), drugs loading (~ 10%), stability (> 2 months) in the neutral solution, and appropriate cryoprotectant selection. We assessed caspase 3/7 apopototic pathway in vitro that showed significantly reduced signals of caspase 3/7 activation after the FL-cHy-NPs and HK-cHy-NPs (alone or in combination) compared to the CisPt. The final formulation i.e. crosslinked-hybrid-nanoparticle-embedded-in-thermogel was developed by incorporating drug-loaded cHy-NPs in poloxamer-407, poloxamer-188, and carbomer-940-based hydrogel. A combination of artificial intelligence (AI)-based qualitative and quantitative image analysis determined the particle size and distribution throughout the visible segment. The developed formulation was able to release the FL and HK for at least a month. Overall, a highly stable nanoformulation was successfully developed for combating treatment-induced or drug-induced ototoxicity via local administration to the inner ear.


Asunto(s)
Nanopartículas , Pez Cebra , Animales , Nanopartículas/química , Oído Interno/efectos de los fármacos , Hidrogeles/química , Cisplatino/farmacología , Cisplatino/química , Línea Celular , Compuestos de Bifenilo/química , Sistemas de Liberación de Medicamentos/métodos , Lignanos/química , Lignanos/farmacología , Lignanos/administración & dosificación , Ratones , Supervivencia Celular/efectos de los fármacos
2.
Drug Dev Res ; 85(6): e22259, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233388

RESUMEN

Schizophrenia affects identification and disturbs our thinking and motivational capacity. Long-term use of daidzin (DZN) is evident to enhance attention and memory in experimental animals. This study aimed to investigate the effect of DZN on Swiss mice. To check animals' attention, identification, thinking, and motivational ability, we performed behavioral studies using marble burying, dust removal, and trained swimming protocols. For this, a total of 36 male Swiss albino mice were randomly divided into six groups, consisting of 6 animals in each group, as follows: control (vehicle), DZN-1.25, DZN-2.5, DZN-5 mg/kg, olanzapine (OLN)-2, and a combination of DZN-1.25 with OLN-2. Additionally, in silico studies are also performed to understand the possible molecular mechanisms behind this neurological effect. Findings suggest that DZN dose-dependently and significantly (p < .05) increased marble burying and removed dust while reducing the time to reach the target point. DZN-1.25 was found to enhance OLN's effect significantly (p < .05), possibly via agonizing its activity in animals. In silico findings suggest that DZN has strong binding affinities of -10.1 and -10.4 kcal/mol against human serotonin 2 A (5-HT2A) and dopamine 2 (D2) receptors, respectively. Additionally, DZN exhibits favorable pharmacokinetic and toxicity properties. We suppose that DZN may exert its attention- and memory-enhancing abilities by interacting with 5-HT2A and D2 receptors. It may exert a synergistic antischizophrenia-like effect with the standard drug, OLN. Further studies are required to discover the exact molecular mechanism for this neurological function in animals.


Asunto(s)
Antipsicóticos , Memoria , Olanzapina , Receptor de Serotonina 5-HT2A , Receptores de Dopamina D2 , Animales , Olanzapina/farmacología , Masculino , Ratones , Memoria/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Antipsicóticos/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Simulación del Acoplamiento Molecular , Conducta Animal/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo
3.
Cell Commun Signal ; 21(1): 145, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337283

RESUMEN

The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) sensitive Ca2+-permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia-reperfusion injury in organ levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, T-cell and acute myelogenous leukemia. This updated and comprehensive review also analyzes the mechanisms by which TRPM2-mediated Ca2+ signaling can regulate the growth and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that TRPM2 may be a unique therapeutic target in the treatment of several types of cancer. Video Abstract.


Asunto(s)
Melanoma , Neuroblastoma , Canales Catiónicos TRPM , Humanos , Calcio/metabolismo , Proliferación Celular , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA