Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Am Chem Soc ; 144(30): 13729-13739, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35876689

RESUMEN

We are currently witnessing the dawn of hydrogen (H2) economy, where H2 will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H2 can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H2 storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H2 as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF (monoMOF) for H2 storage. After densification, this monoMOF stores 46 g L-1 H2 at 50 bar and 77 K and delivers 41 and 42 g L-1 H2 at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature-pressure (25-50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H2 gas when compared with benchmark materials and an 83% reduction compared to compressed H2 gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H2 storage applications.

2.
Chem Soc Rev ; 50(7): 4411-4431, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33606857

RESUMEN

Developments in the confinement of phosphines within micro- or nano-environments are explored. Phosphines are ubiquitous across metal coordination chemistry and underpin some of the most famous homogeneous transition metal catalysts. Constraining phosphines within confined environments influences not only their behaviour but also that of their metal complexes. Notable examples include the use of metal-organic frameworks (MOFs) or metal-organic cages (MOCs) to support phosphines which demonstrate how the microenvironment within such constructs leads to reactivity modification. The development of phosphine confinement is explored and parallels are drawn with related constrained macrocyclic systems and mechanically interlocked molecules. The review concludes by identifying areas that remain a challenge and those that will provide new avenues for research.

3.
Molecules ; 27(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557805

RESUMEN

Donor-acceptor dyads and triads comprising core-substituted naphthalene diimide (NDI) chromophores and either phenothiazine or phenoxazine donors are described. Synthesis combined with electrochemical and spectroelectrochemical investigations facilitates characterisation of the various redox states of these molecules, confirming the ability to combine arrays of electron donating and accepting moieties into single species that retain the redox properties of these individual moieties.

4.
Chem Soc Rev ; 49(13): 4189-4202, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32510083

RESUMEN

In the last decade it has become possible to resolve the geometric structure of organic molecules with intramolecular resolution using high resolution scanning probe microscopy (SPM), and specifically using the subset of SPM known as noncontact atomic force microscopy (ncAFM). In world leading groups it has become routine not only to perform sub-molecular imaging of the chemical, electronic, and electrostatic properties of single molecules, but also to use this technique to track complex on-surface chemical reactions, investigate novel reaction products, and even synthesise new molecular structures one bond at a time. These developments represent the cutting edge of characterisation at the single chemical bond level, and have revolutionised our understanding of surface-based chemical processes.

5.
Nat Mater ; 23(2): 172-173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123814
6.
Inorg Chem ; 59(21): 15646-15658, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33044820

RESUMEN

Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host-guest interactions involved at the atomic scale. Metal-organic polyhedra (MOPs) showing permanent porosity upon desolvation are rarely observed. We report a family of MOPs (Cu-1a, Cu-1b, Cu-2), which derive their permanent porosity from cavities between packed cages rather than from within the polyhedra. Thus, for Cu-1a, the void fraction outside the cages totals 56% with only 2% within. The relative stabilities of these MOP structures are rationalized by considering their weak nondirectional packing interactions using Hirshfeld surface analyses. The exceptional stability of Cu-1a enables a detailed structural investigation into the adsorption of CO2 and CH4 using in situ X-ray and neutron diffraction, coupled with DFT calculations. The primary binding sites for adsorbed CO2 and CH4 in Cu-1a are found to be the open metal sites and pockets defined by the faces of phenyl rings. More importantly, the structural analysis of a hydrated sample of Cu-1a reveals a strong hydrogen bond between the adsorbed CO2 molecule and the Cu(II)-bound water molecule, shedding light on previous empirical and theoretical observations that partial hydration of metal-organic framework (MOF) materials containing open metal sites increases their uptake of CO2. The results of the crystallographic study on MOP-gas binding have been rationalized using DFT calculations, yielding individual binding energies for the various pore environments of Cu-1a.

7.
Phys Chem Chem Phys ; 22(8): 4429-4438, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32051990

RESUMEN

A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon reduction of each BODIPY moiety radical anions are formed which are shown to have different spin multiplicities by electron paramagnetic resonance (EPR) spectroscopy and distinct profiles in their cyclic voltammograms and UV-visible spectra. The relationship between structure and multiplicity is demonstrated showing that the balance between singlet, biradical or triplet states in the dyads depends on relative orientation and connectivity of the BODIPY groups. The strategy is applied to the synthesis of a BODIPY triad which adopts an unusual quartet state upon reduction to its radical trianion.

8.
Molecules ; 25(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252224

RESUMEN

1,4-dimethoxypillar[5]arene undergoes reversible multielectron oxidations forming stable radical cations, a property retained when incorporated in [2]rotaxanes, suggesting that pillar[5]arenes can be employed as viable, yet unreported, electron donors.


Asunto(s)
Calixarenos/química , Rotaxanos/química , Técnicas Electroquímicas , Estructura Molecular
9.
J Am Chem Soc ; 140(20): 6416-6425, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29699391

RESUMEN

Site-selective organic transformations are commonly required in the synthesis of complex molecules. By employing a bespoke metal-organic framework (MOF, 1·[Mn(CO)3N3]), in which coordinated azide anions are precisely positioned within 1D channels, we present a strategy for the site-selective transformation of dialkynes into alkyne-functionalized triazoles. As an illustration of this approach, 1,7-octadiyne-3,6-dione stoichiometrically furnishes the mono-"click" product N-methyl-4-hex-5'-ynl-1',4'-dione-1,2,3-triazole with only trace bis-triazole side-product. Stepwise insights into conversions of the MOF reaction vessel were obtained by X-ray crystallography, demonstrating that the reactive sites are "isolated" from one another. Single-crystal to single-crystal transformations of the Mn(I)-metalated material 1·[Mn(CO)3(H2O)]Br to the corresponding azide species 1·[Mn(CO)3N3] with sodium azide, followed by a series of [3+2] azide-alkyne cycloaddition reactions, are reported. The final liberation of the "click" products from the porous material is achieved by N-alkylation with MeBr, which regenerates starting MOF 1·[Mn(CO)3(H2O)]Br and releases the organic products, as characterized by NMR spectroscopy and mass spectrometry. Once the dialkyne length exceeds the azide separation, site selectivity is lost, confirming the critical importance of isolated azide moieties for this strategy. We postulate that carefully designed MOFs can act as physical protecting groups to facilitate other site-selective and chemoselective transformations.

10.
Chemistry ; 24(1): 56-61, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29065224

RESUMEN

On-surface reactions based on metal-catalysed Ullmann coupling have been successfully employed to synthesise a wide variety of covalently coupled structures. Substrate chemistry and topology are both known to effect the progression of an on-surface reaction; offering routes to control efficiency and selectivity. Here, we detail ultra-high vacuum scanning probe microscopy experiments showing that templating a catalytically active surface, via a supramolecular template, influences the reaction pathway of an on-surface Ullmann-type coupling reaction by inhibiting one potential intermediate structure and stabilising another.

14.
Phys Chem Chem Phys ; 20(2): 752-764, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29139504

RESUMEN

Varying the degree of thionation of a series of naphthalene diimide (NDI) and naphthalic imide (NI) phenothiazine dyad systems affords a systematic approach for tuning the system's donor-acceptor energy gap. Each dyad was compared to model NDI/NI systems and fully characterised through single crystal X-ray diffraction, NMR, cyclic voltammetry, electron paramagnetic resonance (EPR), transient absorption spectroscopy (TA), time-resolved infra-red spectroscopy (TRIR) and DFT. The measurements reveal that thionation increases both electron affinity of the NDI/NI acceptor dyad component and accessibility of the singly or doubly reduced states. Furthermore, FTIR and TA measurements show that excited state behaviour is greatly affected by thionation of the NDI and induces a decrease in the lifetime of the excited states formed upon the creation of charge-separated states.

15.
Chem Soc Rev ; 46(9): 2520-2542, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28401976

RESUMEN

The application of supramolecular chemistry on solid surfaces represents an exciting field of research that continues to develop in new and unexpected directions. This review highlights recent advances in the field which range from the fundamental aspects of the thermodynamics of self-assembly through to the development of new materials with potential application as new materials. The unique aspects of working on solid surfaces are highlighted and advances in the assembly of many component systems and highly complex fractal-like and quasicrystalline systems discussed. The unique features of working in the surface-based environment and the utilisation of scanning probe microscopies as a primary characterisation tool are highlighted.

16.
Phys Chem Chem Phys ; 18(7): 5419-31, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26822947

RESUMEN

Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of the electric field portion of the wave with reactants during the synthesis of MOFs. In order to overcome this lack of fundamental understanding, information about the dielectric properties of the reactants is required. In this work the dielectric constants (ε') and loss factors (ε'') of benzene-1,4-dicarboxylic acid (H2BDC; also known as terephthalic acid) and a number of M(III) (M = metal) salts dissolved in deionized water were measured as a function of frequency, temperature and concentration and with varying anions and cations. Dielectric data confirm the aqueous M(III) salts to be strong microwave absorbers, particularly at 915 MHz. M(III) salts with mono-anionic ligands (for example chlorides and nitrates) exhibit higher losses than di-anionic salts (sulfates) demonstrating that the former are heated more effectively in an applied microwave field. Of the M(III) salts containing either singly- or doubly-charged anions, those containing Fe(III) have the highest loss indicating that they will heat more efficiently than other M(III) salts such as Cr(III) and Al(III). Interestingly, H2BDC exhibits little interaction with the electric field at microwave frequencies.

17.
Acc Chem Res ; 47(12): 3417-27, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25330179

RESUMEN

CONSPECTUS: The arrangement of molecular species into extended structures remains the focus of much current chemical science. The organization of molecules on surfaces using intermolecular interactions has been studied to a lesser degree than solution or solid-state systems, and unanticipated observations still lie in store. Intermolecular hydrogen bonds are an attractive tool that can be used to facilitate the self-assembly of an extended structure through the careful design of target building blocks. Our studies have focused on the use of 3,4,9,10-perylene tetracarboxylic acid diimides (PTCDIs), and related functionalized analogues, to prepare extended arrays on surfaces. These molecules are ideal for such studies because they are specifically designed to interact with appropriate diaminopyridine-functionalized molecules, and related species, through complementary hydrogen bonds. Additionally, PTCDI species can be functionalized in the bay region of the molecule, facilitating modification of the self-assembled structures that can be prepared. Through a combination of PTCDI derivatives, sometimes in combination with melamine, porous two-dimensional arrays can be formed that can entrap guest molecules. The factors that govern the self-assembly processes of PTCDI derivatives are discussed, and the ability to construct suitable target arrays and host-specific molecular species, including fullerenes and transition metal clusters, is demonstrated.

18.
Angew Chem Int Ed Engl ; 54(44): 12860-7, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26373458

RESUMEN

Open-framework materials, such as metal-organic frameworks (MOFs) and coordination polymers have been widely investigated for their gas adsorption and separation properties. However, recent studies have demonstrated that their highly crystalline structures can be used to periodically organize guest molecules and non-structural metal compounds either within their pore voids or by anchoring to their framework architecture. Accordingly, the open framework can act as a matrix for isolating and elucidating the structures of these moieties by X-ray diffraction. This concept has broad scope for development as an analytical tool where obtaining single crystals of a target molecule presents a significant challenge and it additionally offers potential for obtaining insights into chemically reactive species that can be stabilized within the pore network. However, the technique does have limitations and as yet a general experimental method has not been realized. Herein we focus on recent examples in which framework materials have been utilized as a scaffold for ordering molecules for analysis by diffraction methods and canvass areas for future exploration.

19.
Inorg Chem ; 53(5): 2606-12, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24512024

RESUMEN

The mechanism and intermediates in the UV-light-initiated ligand rearrangement of fac-Re(diimine)(CO)3Cl to form the mer isomer, when incorporated into a 3D metal-organic framework (MOF), have been investigated. The structure hosting the rhenium diimine complex is a 3D network with the formula {Mn(DMF)2[LRe(CO)3Cl]}∞ (ReMn; DMF = N,N-dimethylformamide), where the diimine ligand L, 2,2'-bipyridine-5,5'-dicarboxylate, acts as a strut of the MOF. The incorporation of ReMn into a KBr disk allows spatial distribution of the mer-isomer photoproduct in the disk to be mapped and spectroscopically characterized by both Fourier transform infrared and Raman microscopy. Photoisomerization has been monitored by IR spectroscopy and proceeds via dissociation of a CO to form more than one dicarbonyl intermediate. The dicarbonyl species are stable in the solid state at 200 K. The photodissociated CO ligand appears to be trapped within the crystal lattice and, upon warming above 200 K, readily recombines with the dicarbonyl intermediates to form both the fac-Re(diimine)(CO)3Cl starting material and the mer-Re(diimine)(CO)3Cl photoproduct. Experiments over a range of temperatures (265-285 K) allow estimates of the activation enthalpy of recombination for each process of ca. 16 (±6) kJ mol(-1) (mer formation) and 23 (±4) kJ mol(-1) (fac formation) within the MOF. We have compared the photochemistry of the ReMn MOF with a related alkane-soluble Re(dnb)(CO)3Cl complex (dnb = 4,4'-dinonyl-2,2'-bipyridine). Time-resolved IR measurements clearly show that, in an alkane solution, the photoinduced dicarbonyl species again recombines with CO to both re-form the fac-isomer starting material and form the mer-isomer photoproduct. Density functional theory calculations of the possible dicarbonyl species aids the assignment of the experimental data in that the ν(CO) IR bands of the CO loss intermediate are, as expected, shifted to lower energy when the metal is bound to DMF rather than to an alkane and both solution data and calculations suggest that the ν(CO) band positions in the photoproduced dicarbonyl intermediates of ReMn are consistent with DMF binding.


Asunto(s)
Ácidos Carboxílicos/química , Iminas/química , Manganeso/química , Metales/química , Compuestos Organometálicos/química , Fotoquímica , Teoría Cuántica , Renio/química , Isomerismo , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier
20.
Chem Commun (Camb) ; 60(4): 452-455, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38088086

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) constructed from naphthalene-diimide bearing tectons undergo photochromic changes whilst forming radical bearing species within the framework structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA