Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(6): 1090-1100.e6, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340717

RESUMEN

To maintain mitochondrial homeostasis, damaged or excessive mitochondria are culled in coordination with the physiological state of the cell. The integrated stress response (ISR) is a signaling network that recognizes diverse cellular stresses, including mitochondrial dysfunction. Because the four ISR branches converge to common outputs, it is unclear whether mitochondrial stress detected by this network can regulate mitophagy, the autophagic degradation of mitochondria. Using a whole-genome screen, we show that the heme-regulated inhibitor (HRI) branch of the ISR selectively induces mitophagy. Activation of the HRI branch results in mitochondrial localization of phosphorylated eukaryotic initiation factor 2, which we show is sufficient to induce mitophagy. The HRI mitophagy pathway operates in parallel with the mitophagy pathway controlled by the Parkinson's disease related genes PINK1 and PARKIN and is mechanistically distinct. Therefore, HRI repurposes machinery that is normally used for translational initiation to trigger mitophagy in response to mitochondrial damage.


Asunto(s)
Mitofagia , Proteínas Quinasas , Mitofagia/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Autofagia/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal
2.
EMBO J ; 43(3): 391-413, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225406

RESUMEN

Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.


Asunto(s)
Fibroblastos , Membranas Mitocondriales , Animales , Ratones , Fibroblastos/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
3.
Mol Cell ; 80(4): 621-632.e6, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33152269

RESUMEN

Mitochondria are highly dynamic organelles that continuously grow, divide, and fuse. The division of mitochondria is crucial for human health. During mitochondrial division, the mechano-guanosine triphosphatase (GTPase) dynamin-related protein (Drp1) severs mitochondria at endoplasmic reticulum (ER)-mitochondria contact sites, where peripheral ER tubules interact with mitochondria. Here, we report that Drp1 directly shapes peripheral ER tubules in human and mouse cells. This ER-shaping activity is independent of GTP hydrolysis and located in a highly conserved peptide of 18 amino acids (termed D-octadecapeptide), which is predicted to form an amphipathic α helix. Synthetic D-octadecapeptide tubulates liposomes in vitro and the ER in cells. ER tubules formed by Drp1 promote mitochondrial division by facilitating ER-mitochondria interactions. Thus, Drp1 functions as a two-in-one protein during mitochondrial division, with ER tubulation and mechano-GTPase activities.


Asunto(s)
Dinaminas/metabolismo , Dinaminas/fisiología , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Animales , Dinaminas/genética , Retículo Endoplásmico/efectos de los fármacos , GTP Fosfohidrolasas/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales , Oligopéptidos/farmacología
4.
Nat Rev Mol Cell Biol ; 15(10): 634-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25237825

RESUMEN

During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies.


Asunto(s)
División Celular/genética , División Celular/fisiología , Mitocondrias/genética , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/fisiología , Desarrollo Embrionario , Fertilización/genética , Humanos , Mitofagia , Oogénesis/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
5.
Cell ; 141(2): 280-9, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403324

RESUMEN

Mitochondria are highly mobile and dynamic organelles that continually fuse and divide. These processes allow mitochondria to exchange contents, including mitochondrial DNA (mtDNA). Here we examine the functions of mitochondrial fusion in differentiated skeletal muscle through conditional deletion of the mitofusins Mfn1 and Mfn2, mitochondrial GTPases essential for fusion. Loss of the mitofusins causes severe mitochondrial dysfunction, compensatory mitochondrial proliferation, and muscle atrophy. Mutant mice have severe mtDNA depletion in muscle that precedes physiological abnormalities. Moreover, the mitochondrial genomes of the mutant muscle rapidly accumulate point mutations and deletions. In a related experiment, we find that disruption of mitochondrial fusion strongly increases mitochondrial dysfunction and lethality in a mouse model with high levels of mtDNA mutations. With its dual function in safeguarding mtDNA integrity and preserving mtDNA function in the face of mutations, mitochondrial fusion is likely to be a protective factor in human disorders associated with mtDNA mutations.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Musculares/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mutación , Animales , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , GTP Fosfohidrolasas/metabolismo , Genes Letales , Masculino , Ratones , Mitocondrias Musculares/genética , Miopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
6.
J Lipid Res ; 65(6): 100563, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763493

RESUMEN

Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography coupled with electrospray ionization-high resolution MS to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts knocked out for OPA1 and Mfn1/2 genes. One hundred sixty-seven different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PCs, 63), phosphatidylethanolamines (55), phosphatidylinositols (21), and cardiolipins (28). A slight decrease in the cardiolipin/PC ratio was found for Mfn1/2-knockout mitochondria. Principal component analysis and hierarchical cluster analysis were subsequently used to further process hydrophilic interaction liquid chromatography-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and phosphatidylethanolamine classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to WT mouse embryonic fibroblasts. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially Mfns, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes.


Asunto(s)
GTP Fosfohidrolasas , Lipidómica , Mitocondrias , Fosfolípidos , Animales , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/deficiencia , Ratones , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Ratones Noqueados , Fibroblastos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
7.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34355730

RESUMEN

Male germline development involves choreographed changes to mitochondrial number, morphology and organization. Mitochondrial reorganization during spermatogenesis was recently shown to require mitochondrial fusion and fission. Mitophagy, the autophagic degradation of mitochondria, is another mechanism for controlling mitochondrial number and physiology, but its role during spermatogenesis is largely unknown. During post-meiotic spermatid development, restructuring of the mitochondrial network results in packing of mitochondria into a tight array in the sperm midpiece to fuel motility. Here, we show that disruption of mouse Fis1 in the male germline results in early spermatid arrest that is associated with increased mitochondrial content. Mutant spermatids coalesce into multinucleated giant cells that accumulate mitochondria of aberrant ultrastructure and numerous mitophagic and autophagic intermediates, suggesting a defect in mitophagy. We conclude that Fis1 regulates mitochondrial morphology and turnover to promote spermatid maturation.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Espermátides/metabolismo , Espermatogénesis/genética , Animales , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética
8.
Ann Intern Med ; 176(11): 1448-1455, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37871318

RESUMEN

BACKGROUND: Many U.S. states have legislated to allow nurse practitioners (NPs) to independently prescribe drugs. Critics contend that these moves will adversely affect quality of care. OBJECTIVE: To compare rates of inappropriate prescribing among NPs and primary care physicians. DESIGN: Rates of inappropriate prescribing were calculated and compared for 23 669 NPs and 50 060 primary care physicians who wrote prescriptions for 100 or more patients per year, with adjustment for practice experience, patient volume and risk, clinical setting, year, and state. SETTING: 29 states that had granted NPs prescriptive authority by 2019. PATIENTS: Medicare Part D beneficiaries aged 65 years or older in 2013 to 2019. MEASUREMENTS: Inappropriate prescriptions, defined as drugs that typically should not be prescribed for adults aged 65 years or older, according to the American Geriatrics Society's Beers Criteria. RESULTS: Mean rates of inappropriate prescribing by NPs and primary care physicians were virtually identical (adjusted odds ratio, 0.99 [95% CI, 0.97 to 1.01]; crude rates, 1.63 vs. 1.69 per 100 prescriptions; adjusted rates, 1.66 vs. 1.68). However, NPs were overrepresented among clinicians with the highest and lowest rates of inappropriate prescribing. For both types of practitioners, discrepancies in inappropriate prescribing rates across states tended to be larger than discrepancies between these practitioners within states. LIMITATION: The Beers Criteria addresses the appropriateness of a selected subset of drugs and may not be valid in some clinical settings. CONCLUSION: Nurse practitioners were no more likely than physicians to prescribe inappropriately to older patients. Broad efforts to improve the performance of all clinicians who prescribe may be more effective than limiting independent prescriptive authority to physicians. PRIMARY FUNDING SOURCE: The Robert Wood Johnson Foundation and National Science Foundation.


Asunto(s)
Medicare Part D , Enfermeras Practicantes , Médicos de Atención Primaria , Adulto , Humanos , Anciano , Estados Unidos , Prescripción Inadecuada , Pautas de la Práctica en Medicina
9.
Nature ; 542(7641): 372-376, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28114303

RESUMEN

Mitochondria are double-membraned organelles with variable shapes influenced by metabolic conditions, developmental stage, and environmental stimuli. Their dynamic morphology is a result of regulated and balanced fusion and fission processes. Fusion is crucial for the health and physiological functions of mitochondria, including complementation of damaged mitochondrial DNAs and the maintenance of membrane potential. Mitofusins are dynamin-related GTPases that are essential for mitochondrial fusion. They are embedded in the mitochondrial outer membrane and thought to fuse adjacent mitochondria via combined oligomerization and GTP hydrolysis. However, the molecular mechanisms of this process remain unknown. Here we present crystal structures of engineered human MFN1 containing the GTPase domain and a helical domain during different stages of GTP hydrolysis. The helical domain is composed of elements from widely dispersed sequence regions of MFN1 and resembles the 'neck' of the bacterial dynamin-like protein. The structures reveal unique features of its catalytic machinery and explain how GTP binding induces conformational changes to promote GTPase domain dimerization in the transition state. Disruption of GTPase domain dimerization abolishes the fusogenic activity of MFN1. Moreover, a conserved aspartate residue trigger was found to affect mitochondrial elongation in MFN1, probably through a GTP-loading-dependent domain rearrangement. Thus, we propose a mechanistic model for MFN1-mediated mitochondrial tethering, and our results shed light on the molecular basis of mitochondrial fusion and mitofusin-related human neuromuscular disorders.


Asunto(s)
GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , GTP Fosfohidrolasas/genética , Humanos , Hidrólisis , Fusión de Membrana , Potenciales de la Membrana , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Triptófano/metabolismo
10.
J Cell Sci ; 133(14)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32675215

RESUMEN

Mitochondrial fusion and fission (mitochondrial dynamics) are homeostatic processes that safeguard normal cellular function. This relationship is especially strong in tissues with constitutively high energy demands, such as brain, heart and skeletal muscle. Less is known about the role of mitochondrial dynamics in developmental systems that involve changes in metabolic function. One such system is spermatogenesis. The first mitochondrial dynamics gene, Fuzzy onions (Fzo), was discovered in 1997 to mediate mitochondrial fusion during Drosophila spermatogenesis. In mammals, however, the role of mitochondrial fusion during spermatogenesis remained unknown for nearly two decades after discovery of Fzo Mammalian spermatogenesis is one of the most complex and lengthy differentiation processes in biology, transforming spermatogonial stem cells into highly specialized sperm cells over a 5-week period. This elaborate differentiation process requires several developmentally regulated mitochondrial and metabolic transitions, making it an attractive model system for studying mitochondrial dynamics in vivo We review the emerging role of mitochondrial biology, and especially its dynamics, during the development of the male germ line.


Asunto(s)
Proteínas de Drosophila , Dinámicas Mitocondriales , Animales , Drosophila , Masculino , Mitocondrias/genética , Espermatogénesis/genética
11.
N Engl J Med ; 380(16): 1546-1554, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30995374

RESUMEN

BACKGROUND: The Relative Value Scale Update Committee (RUC) of the American Medical Association plays a central role in determining physician reimbursement. The RUC's role and performance have been criticized but subjected to little empirical evaluation. METHODS: We analyzed the accuracy of valuations of 293 common surgical procedures from 2005 through 2015. We compared the RUC's estimates of procedure time with "benchmark" times for the same procedures derived from the clinical registry maintained by the American College of Surgeons National Surgical Quality Improvement Program (NSQIP). We characterized inaccuracies, quantified their effect on physician revenue, and examined whether re-review corrected them. RESULTS: At the time of 108 RUC reviews, the mean absolute discrepancy between RUC time estimates and benchmark times was 18.5 minutes, or 19.8% of the RUC time. However, RUC time estimates were neither systematically shorter nor longer than benchmark times overall (ß, 0.97; 95% confidence interval, 0.94 to 1.01; P = 0.10). Our analyses suggest that whereas orthopedic surgeons and urologists received higher payments than they would have if benchmark times had been used ($160 million and $40 million more, respectively, in Medicare reimbursement in 2011 through 2015), cardiothoracic surgeons, neurosurgeons, and vascular surgeons received lower payments ($130 million, $60 million, and $30 million less, respectively). The accuracy of RUC time estimates improved in 47% of RUC revaluations, worsened in 27%, and was unchanged in 25%. (Percentages do not sum to 100 because of rounding.). CONCLUSIONS: In this analysis of frequently conducted operations, we found substantial absolute discrepancies between intraoperative times as estimated by the RUC and the times recorded for the same procedures in a surgical registry, but the RUC did not systematically overestimate or underestimate times. (Funded by the National Institutes of Health.).


Asunto(s)
Medicare , Tempo Operativo , Escalas de Valor Relativo , Procedimientos Quirúrgicos Operativos/economía , Comités Consultivos , American Medical Association , Tabla de Aranceles , Humanos , Sistema de Registros , Mecanismo de Reembolso , Estados Unidos
12.
Annu Rev Genet ; 46: 265-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22934639

RESUMEN

Mitochondria are dynamic organelles that continually undergo fusion and fission. These opposing processes work in concert to maintain the shape, size, and number of mitochondria and their physiological function. Some of the major molecules mediating mitochondrial fusion and fission in mammals have been discovered, but the underlying molecular mechanisms are only partially unraveled. In particular, the cast of characters involved in mitochondrial fission needs to be clarified. By enabling content mixing between mitochondria, fusion and fission serve to maintain a homogeneous and healthy mitochondrial population. Mitochondrial dynamics has been linked to multiple mitochondrial functions, including mitochondrial DNA stability, respiratory capacity, apoptosis, response to cellular stress, and mitophagy. Because of these important functions, mitochondrial fusion and fission are essential in mammals, and even mild defects in mitochondrial dynamics are associated with disease. A better understanding of these processes likely will ultimately lead to improvements in human health.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/fisiología , Enfermedades Mitocondriales/patología , Membranas Mitocondriales/metabolismo , Recambio Mitocondrial , Animales , Apoptosis , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Tamaño Mitocondrial , Mitosis , Mutación
14.
Nat Rev Mol Cell Biol ; 8(11): 870-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17928812

RESUMEN

Recent findings have sparked renewed appreciation for the remarkably dynamic nature of mitochondria. These organelles constantly fuse and divide, and are actively transported to specific subcellular locations. These dynamic processes are essential for mammalian development, and defects lead to neurodegenerative disease. But what are the molecular mechanisms that control mitochondrial dynamics, and why are they important for mitochondrial function? We review these issues and explore how defects in mitochondrial dynamics might cause neuronal disease.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Humanos , Fusión de Membrana , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología
16.
Am J Med Genet A ; 170(8): 2002-11, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145208

RESUMEN

DNM1L encodes dynamin-related protein 1 (DRP1/DLP1), a key component of the mitochondrial fission machinery that is essential for proper functioning of the mammalian brain. Previously reported probands with de novo missense mutations in DNM1L presented in the first year of life with severe encephalopathy and refractory epilepsy, with several dying within the first several weeks after birth. In contrast, we report identical novel missense mutations in DNM1L in two unrelated probands who experienced normal development for several years before presenting with refractory focal status epilepticus and subsequent rapid neurological decline. We expand the phenotype of DNM1L-related mitochondrial fission defects, reveal common unique clinical characteristics and imaging findings, and compare the cellular impact of this novel mutation to the previously reported A395D lethal variant. We demonstrate that our R403C mutation, which resides in the assembly region of DRP1, acts by a dominant-negative mechanism and reduces oligomerization, mitochondrial fission activity, and mitochondrial recruitment of DRP1, but to a lesser extent compared to the A395D mutation. In contrast to the initial report of neonatal lethality resulting from DNM1L mutation and DRP1 dysfunction, our results show that milder DRP1 impairment is compatible with normal early development and subsequently results in a distinct set of neurological findings. In addition, we identify a common pathogenic mechanism whereby DNM1L mutations impair mitochondrial fission. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/genética , Epilepsia/diagnóstico , Epilepsia/genética , GTP Fosfohidrolasas/genética , Genes Dominantes , Proteínas Asociadas a Microtúbulos/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Factores de Edad , Animales , Encéfalo/anomalías , Línea Celular , Preescolar , Dinaminas , Epilepsia/tratamiento farmacológico , Exoma , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Mutación Missense , Fenotipo , Unión Proteica , Transporte de Proteínas
17.
Mol Ther ; 23(10): 1592-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26159306

RESUMEN

We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNA(Lys) gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials.


Asunto(s)
Vectores Genéticos , Mutación , Fosforilación Oxidativa , Animales , Línea Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Desoxirribonucleasas/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Dosificación de Gen , Expresión Génica , Orden Génico , Terapia Genética , Vectores Genéticos/genética , Humanos , Hidrólisis , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación Puntual , Transporte de Proteínas , Factores de Transcripción/metabolismo
18.
J Biol Chem ; 289(28): 19789-98, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24855649

RESUMEN

Because the deubiquitinating enzyme USP33 is involved in several important cellular processes (ß-adrenergic receptor recycling, centrosome amplification, RalB signaling, and cancer cell migration), its levels must be carefully regulated. Using quantitative mass spectrometry, we found that the intracellular level of USP33 is highly sensitive to the activity of p97. Knockdown or chemical inhibition of p97 causes robust accumulation of USP33 due to inhibition of its degradation. The p97 adaptor complex involved in this function is the Ufd1-Npl4 heterodimer. Furthermore, we identified HERC2, a HECT domain-containing E3 ligase, as being responsible for polyubiquitination of USP33. Inhibition of p97 causes accumulation of polyubiquitinated USP33, suggesting that p97 is required for postubiquitination processing. Thus, our study has identified several key molecules that control USP33 degradation within the ubiquitin-proteasome system.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteolisis , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/fisiología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Ciclo Celular/genética , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas , Proteína que Contiene Valosina
19.
Proc Natl Acad Sci U S A ; 109(18): 6975-80, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22509026

RESUMEN

Oxidative stress causes mitochondrial fragmentation and dysfunction in age-related diseases through unknown mechanisms. Cardiolipin (CL) is a phospholipid required for mitochondrial oxidative phosphorylation. The function of CL is determined by its acyl composition, which is significantly altered by the onset of age-related diseases. Here, we examine a role of acyl-CoA:lysocardiolipin acyltransferase lysocardiolipin acyltransferase 1 (ALCAT1), a lysocardiolipin acyltransferase that catalyzes pathological CL remodeling, in mitochondrial biogenesis. We show that overexpression of ALCAT1 causes mitochondrial fragmentation through oxidative stress and depletion of mitofusin mitofusin 2 (MFN2) expression. Strikingly, ALCAT1 overexpression also leads to mtDNA instability and depletion that are reminiscent of MFN2 deficiency. Accordingly, expression of MFN2 completely rescues mitochondrial fusion defect and respiratory dysfunction. Furthermore, ablation of ALCAT1 prevents mitochondrial fragmentation from oxidative stress by up-regulating MFN2 expression, mtDNA copy number, and mtDNA fidelity. Together, these findings reveal an unexpected role of CL remodeling in mitochondrial biogenesis, linking oxidative stress by ALCAT1 to mitochondrial fusion defect.


Asunto(s)
Aciltransferasas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , GTP Fosfohidrolasas/genética , Aciltransferasas/deficiencia , Aciltransferasas/genética , Animales , Cardiolipinas/metabolismo , Línea Celular , Femenino , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Hum Mol Genet ; 21(22): 4817-26, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22859504

RESUMEN

Mitochondria continually undergo fusion and fission, and these dynamic processes play a major role in regulating mitochondrial function. Studies of several genes associated with familial Parkinson's disease (PD) have implicated aberrant mitochondrial dynamics in the disease pathology, but the importance of these processes in dopaminergic neurons remains poorly understood. Because the mitofusins Mfn1 and Mfn2 are essential for mitochondrial fusion, we deleted these genes from a subset of dopaminergic neurons in mice. Loss of Mfn2 results in a movement defect characterized by reduced activity and rearing. In open field tests, Mfn2 mutants show severe, age-dependent motor deficits that can be rescued with L-3,4 dihydroxyphenylalanine. These motor deficits are preceded by the loss of dopaminergic terminals in the striatum. However, the loss of dopaminergic neurons in the midbrain occurs weeks after the onset of these motor and striatal deficits, suggesting a retrograde mode of neurodegeneration. In our conditional knockout strategy, we incorporated a mitochondrially targeted fluorescent reporter to facilitate tracking of mitochondria in the affected neurons. Using an organotypic slice culture system, we detected fragmented mitochondria in the soma and proximal processes of these neurons. In addition, we found markedly reduced mitochondrial mass and transport, which may contribute to the neuronal loss. These effects are specific for Mfn2, as the loss of Mfn1 yielded no corresponding defects in the nigrostriatal circuit. Our findings indicate that perturbations of mitochondrial dynamics can cause nigrostriatal defects and may be a risk factor for the neurodegeneration in PD.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , GTP Fosfohidrolasas/genética , Degeneración Retrógrada/genética , Animales , Transporte Biológico/genética , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Eliminación de Gen , Gráficos de Crecimiento , Levodopa/farmacología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Actividad Motora/genética , Trastornos del Movimiento/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA