Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(7): 1574-6, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687350

RESUMEN

Neuroinflammation is being increasingly recognized as a potential mediator of cognitive impairments in various neurological conditions. Habbas et al. demonstrate that the pro-inflammatory cytokine tumor necrosis factor alpha signals through astrocytes to alter synaptic transmission and impair cognition in a mouse model of multiple sclerosis.


Asunto(s)
Astrocitos/metabolismo , Giro Dentado/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Memoria , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Humanos
2.
Immunity ; 52(1): 11-13, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31951547

RESUMEN

Multiple sclerosis is a chronic inflammatory disease characterized by demyelination in the central nervous system. In this issue of Immunity, Werneberg et al. report a striking loss of synapses driven by excessive microglial pruning early in demyelinating disease, which can be rescued by inhibiting the complement component C3.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Sistema Nervioso Central , Humanos , Microglía , Sinapsis
3.
Cell ; 152(1-2): 248-61, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332759

RESUMEN

Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/citología , Animales , Encéfalo/citología , Células Cultivadas , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/metabolismo , Ratas , Médula Espinal/citología , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(20): e2217635120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155847

RESUMEN

Myelin repair is an unrealized therapeutic goal in the treatment of multiple sclerosis (MS). Uncertainty remains about the optimal techniques for assessing therapeutic efficacy and imaging biomarkers are required to measure and corroborate myelin restoration. We analyzed myelin water fraction imaging from ReBUILD, a double-blind, randomized placebo-controlled (delayed treatment) remyelination trial, that showed a significant reduction in VEP latency in patients with MS. We focused on brain regions rich in myelin. Fifty MS subjects in two arms underwent 3T MRI at baseline and months 3 and 5. Half of the cohort was randomly assigned to receive treatment from baseline through 3 mo, whereas the other half received treatment from 3 mo to 5 mo post-baseline. We computed myelin water fraction changes occurring in normal-appearing white matter of corpus callosum, optic radiations, and corticospinal tracts. An increase in myelin water fraction was documented in the normal-appearing white matter of the corpus callosum, in correspondence with the administration of the remyelinating treatment clemastine. This study provides direct, biologically validated imaging-based evidence of medically induced myelin repair. Moreover, our work strongly suggests that significant myelin repair occurs outside of lesions. We therefore propose myelin water fraction within the normal-appearing white matter of the corpus callosum as a biomarker for clinical trials looking at remyelination.


Asunto(s)
Esclerosis Múltiple , Remielinización , Sustancia Blanca , Humanos , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Encéfalo/patología , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Agua , Biomarcadores
5.
Nat Rev Neurosci ; 21(12): 682-694, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046886

RESUMEN

Throughout our lifespan, new sensory experiences and learning continually shape our neuronal circuits to form new memories. Plasticity at the level of synapses has been recognized and studied for decades, but recent work has revealed an additional form of plasticity - affecting oligodendrocytes and the myelin sheaths they produce - that plays a crucial role in learning and memory. In this Review, we summarize recent work characterizing plasticity in the oligodendrocyte lineage following sensory experience and learning, the physiological and behavioural consequences of manipulating that plasticity, and the evidence for oligodendrocyte and myelin dysfunction in neurodevelopmental disorders with cognitive symptoms. We also discuss the limitations of existing approaches and the conceptual and technical advances that are needed to move forward this rapidly developing field.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Vaina de Mielina/fisiología , Plasticidad Neuronal/fisiología , Animales , Enfermedades Desmielinizantes/fisiopatología , Humanos , Oligodendroglía/fisiología , Sinapsis
6.
Pediatr Res ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942888

RESUMEN

BACKGROUND: Preterm white matter injury (PWMI) is the most common cause of brain injury in premature neonates. PWMI involves a differentiation arrest of oligodendrocytes, the myelinating cells of the central nervous system. Clemastine was previously shown to induce oligodendrocyte differentiation and myelination in mouse models of PWMI at a dose of 10 mg/kg/day. The minimum effective dose (MED) of clemastine is unknown. Identification of the MED is essential for maximizing safety and efficacy in neonatal clinical trials. We hypothesized that the MED in neonatal mice is lower than 10 mg/kg/day. METHODS: Mouse pups were exposed to normoxia or hypoxia (10% FiO2) from postnatal day 3 (P3) through P10. Vehicle or clemastine at one of four doses (0.5, 2, 7.5 or 10 mg/kg/day) was given to hypoxia-exposed pups. Myelination was assessed at age P14 and 10 weeks to determine the MED. Clemastine pharmacokinetics were evaluated at steady-state on day 8 of treatment. RESULTS: Clemastine rescued hypoxia-induced hypomyelination with a MED of 7.5 mg/kg/day. Pharmacokinetic analysis of the MED revealed Cmax 44.0 ng/mL, t1/2 4.6 h, and AUC24 280.1 ng*hr/mL. CONCLUSIONS: Based on these results, myelination-promoting exposures should be achievable with oral doses of clemastine in neonates with PWMI. IMPACT: Preterm white matter injury (PWMI) is the most common cause of brain injury and cerebral palsy in premature neonates. Clemastine, an FDA-approved antihistamine, was recently identified to strongly promote myelination in a mouse model of PWMI and is a possible treatment. The minimum effective dose in neonatal rodents is unknown and is critical for guiding dose selection and balancing efficacy with toxicity in future clinical trials. We identified the minimum effective dose of clemastine and the associated pharmacokinetics in a murine chronic hypoxia model of PWMI, paving the way for a future clinical trial in human neonates.

7.
Glia ; 71(9): 2180-2195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37203250

RESUMEN

central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.


Asunto(s)
Esclerosis Múltiple , Remielinización , Ratones , Animales , Remielinización/fisiología , Oligodendroglía/fisiología , Diferenciación Celular , Inflamación , Ratones Endogámicos C57BL
8.
Brain ; 145(11): 3943-3952, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35678509

RESUMEN

Many biomarkers in clinical neuroscience lack pathological certification. This issue is potentially a significant contributor to the limited success of neuroprotective and neurorestorative therapies for human neurological disease-and is evident even in areas with therapeutic promise such as myelin repair. Despite the identification of promising remyelinating candidates, biologically validated methods to demonstrate therapeutic efficacy or provide robust preclinical evidence of remyelination in the CNS are lacking. Therapies with potential to remyelinate the CNS constitute one of the most promising and highly anticipated therapeutic developments in the pipeline to treat multiple sclerosis and other demyelinating diseases. The optic nerve has been proposed as an informative pathway to monitor remyelination in animals and human subjects. Recent clinical trials using visual evoked potential have had promising results, but without unequivocal evidence about the cellular and molecular basis for signal changes on visual evoked potential, the interpretation of these trials is constrained. The visual evoked potential was originally developed and used in the clinic as a diagnostic tool but its use as a quantitative method for assessing therapeutic response requires certification of its biological specificity. Here, using the tools of experimental pathology we demonstrate that quantitative measurements of myelination using both histopathological measures of nodal structure and ultrastructural assessments correspond to visual evoked potential latency in both inflammatory and chemical models of demyelination. Visual evoked potential latency improves after treatment with a tool remyelinating compound (clemastine), mirroring both quantitative and qualitative myelin assessment. Furthermore, clemastine does not improve visual evoked potential latency following demyelinating injury when administered to a transgenic animal incapable of forming new myelin. Therefore, using the capacity for therapeutic enhancement and biological loss of function we demonstrate conclusively that visual evoked potential measures myelin status and is thereby a validated tool for preclinical verification of remyelination.


Asunto(s)
Esclerosis Múltiple , Remielinización , Humanos , Animales , Potenciales Evocados Visuales , Clemastina/uso terapéutico , Vaina de Mielina/metabolismo , Esclerosis Múltiple/patología , Biomarcadores/metabolismo
9.
J Neurosci ; 41(42): 8710-8724, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34507952

RESUMEN

We report that the neurotrophin receptor p75 contributes to sensory neuron survival through the regulation of cholesterol metabolism in Schwann cells. Selective deletion of p75 in mouse Schwann cells of either sex resulted in a 30% loss of dorsal root ganglia (DRG) neurons and diminished thermal sensitivity. P75 regulates Schwann cell cholesterol biosynthesis in response to BDNF, forming a co-receptor complex with ErbB2 and activating ErbB2-mediated stimulation of sterol regulatory element binding protein 2 (SREBP2), a master regulator of cholesterol synthesis. Schwann cells lacking p75 exhibited decreased activation of SREBP2 and a reduction in 7-dehydrocholesterol (7-DHC) reductase (DHCR7) expression, resulting in accumulation of the neurotoxic intermediate, 7-dehyrocholesterol in the sciatic nerve. Restoration of DHCR7 in p75 null Schwann cells in mice significantly attenuated DRG neuron loss. Together, these results reveal a mechanism by which the disruption of lipid metabolism in glial cells negatively influences sensory neuron survival, which has implications for a wide range of peripheral neuropathies.SIGNIFICANCE STATEMENT Although expressed in Schwann cells, the role of p75 in myelination has remained unresolved in part because of its dual expression in sensory neurons that Schwann cells myelinate. When p75 was deleted selectively among Schwann cells, myelination was minimally affected, while sensory neuron survival was reduced by 30%. The phenotype is mainly due to dysregulation of cholesterol biosynthesis in p75-deficient Schwann cells, leading to an accumulation of neurotoxic cholesterol precursor, 7-dehydrocholesterol (7-DHC). Mechanism-wise, we discovered that in response to BDNF, p75 recruits and activates ErbB2 independently of ErbB3, thereby stimulating the master regulator, sterol regulatory element binding protein 2 (SREBP2). These results together highlight a novel role of p75 in Schwann cells in regulating DRG neuron survival by orchestrating proper cholesterol metabolism.


Asunto(s)
Receptores de Factor de Crecimiento Nervioso/deficiencia , Receptores de Factor de Crecimiento Nervioso/genética , Células de Schwann/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Células de Schwann/ultraestructura , Células Receptoras Sensoriales/ultraestructura
10.
Ann Neurol ; 90(4): 558-567, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34402546

RESUMEN

Central nervous system demyelination in multiple sclerosis (MS) and subsequent axonal degeneration represent a major cause of clinical morbidity. Learning, salient experiences, and stimulation of neuronal activity induce new myelin formation in rodents, and in animal models of demyelination, remyelination can be enhanced via experience- and activity-dependent mechanisms. Furthermore, preliminary studies in MS patients support the use of neuromodulation and rehabilitation exercises for symptomatic improvement, suggesting that these interventions may represent nonpharmacological strategies for promoting remyelination. Here, we review the literature on myelin plasticity processes and assess the potential to leverage these mechanisms to develop remyelinating therapies. ANN NEUROL 2021;90:558-567.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/metabolismo , Plasticidad Neuronal/fisiología , Remielinización/fisiología , Animales , Humanos , Vaina de Mielina/efectos de los fármacos , Neuronas/citología , Oligodendroglía/citología , Remielinización/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-35710320

RESUMEN

BACKGROUND: Chronic demyelination is a major contributor to axonal vulnerability in multiple sclerosis (MS). Therefore, remyelination could provide a potent neuroprotective strategy. The ReBUILD trial was the first study showing evidence for successful remyelination following treatment with clemastine in people with MS (pwMS) with no evidence of disease activity or progression (NEDAP). Whether remyelination was associated with neuroprotection remains unexplored. METHODS: Plasma neurofilament light chain (NfL) levels were measured from ReBUILD trial's participants. Mixed linear effect models were fit for individual patients, epoch and longitudinal measurements to compare NfL concentrations between samples collected during the active and placebo treatment period. RESULTS: NfL concentrations were 9.6% lower in samples collected during the active treatment with clemastine (n=53, geometric mean=6.33 pg/mL) compared to samples collected during treatment with placebo (n=73, 7.00 pg/mL) (B=-0.035 [-0.068 to -0.001], p=0.041). Applying age- and body mass index-standardised NfL Z-scores and percentiles revealed similar results (0.04 vs 0.35, and 27.5 vs 33.3, p=0.023 and 0.042, respectively). Higher NfL concentrations were associated with more delayed P100 latencies (B=1.33 [0.26 to 2.41], p=0.015). In addition, improvement of P100 latencies between visits was associated with a trend for lower NfL values (B=0.003 [-0.0004 to 0.007], p=0.081). Based on a Cohen's d of 0.248, a future 1:1 parallel-arm placebo-controlled study using a remyelinating agent with comparable effect as clemastine would need 202 subjects per group to achieve 80% power. CONCLUSIONS: In pwMS, treatment with the remyelinating agent clemastine was associated with a reduction of blood NfL, suggesting that neuroprotection is achievable and measurable with therapeutic remyelination. TRIAL REGISTRATION NUMBER: NCT02040298.

12.
J Neurosci ; 39(12): 2184-2194, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30696729

RESUMEN

A significant unmet need for patients with multiple sclerosis (MS) is the lack of U.S. Food and Drug Administration (FDA)-approved remyelinating therapies. We have identified a compelling remyelinating agent, bazedoxifene (BZA), a European Medicines Agency (EMA)-approved (and FDA-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM) that could move quickly from bench to bedside. This therapy stands out as a tolerable alternative to previously identified remyelinating agents and other candidates within this family. Using an unbiased high-throughput screen, with subsequent validation in both murine and human oligodendrocyte precursor cells (OPCs) and coculture systems, we find that BZA enhances differentiation of OPCs into functional oligodendrocytes. Using an in vivo murine model of focal demyelination, we find that BZA enhances OPC differentiation and remyelination. Of critical importance, we find that BZA acts independently of its presumed target, the ER, in both in vitro and in vivo systems. Using a massive computational data integration approach, we independently identify six possible candidate targets through which SERMs may mediate their effect on remyelination. Of particular interest, we identify EBP (encoding 3ß-hydroxysteroid-Δ8,Δ7-isomerase), a key enzyme in the cholesterol biosynthesis pathway, which was previously implicated as a target for remyelination. These findings provide valuable insights into the implications for SERMs in remyelination for MS and hormonal research at large.SIGNIFICANCE STATEMENT Therapeutics targeted at remyelination failure, which results in axonal degeneration and ultimately disease progression, represent a large unmet need in the multiple sclerosis (MS) population. Here, we have validated a tolerable European Medicines Agency-approved (U.S. Food and Drug Administration-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM), bazedoxifene (BZA), as a potent agent of oligodendrocyte precursor cell (OPC) differentiation and remyelination. SERMs, which were developed as nuclear ER-α and ER-ß agonists/antagonists, have previously been implicated in remyelination and neuroprotection, following a heavy focus on estrogens with underwhelming and conflicting results. We show that nuclear ERs are not required for SERMs to mediate their potent effects on OPC differentiation and remyelination in vivo and highlight EBP, an enzyme in the cholesterol biosynthesis pathway that could potentially act as a target for SERMs.


Asunto(s)
Indoles/administración & dosificación , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Receptores de Estrógenos/fisiología , Remielinización/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Animales , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/fisiología
13.
Nature ; 509(7499): 189-94, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24776795

RESUMEN

Astrocytes, the most abundant cells in the central nervous system, promote synapse formation and help to refine neural connectivity. Although they are allocated to spatially distinct regional domains during development, it is unknown whether region-restricted astrocytes are functionally heterogeneous. Here we show that postnatal spinal cord astrocytes express several region-specific genes, and that ventral astrocyte-encoded semaphorin 3a (Sema3a) is required for proper motor neuron and sensory neuron circuit organization. Loss of astrocyte-encoded Sema3a leads to dysregulated α-motor neuron axon initial segment orientation, markedly abnormal synaptic inputs, and selective death of α- but not of adjacent γ-motor neurons. In addition, a subset of TrkA(+) sensory afferents projects to ectopic ventral positions. These findings demonstrate that stable maintenance of a positional cue by developing astrocytes influences multiple aspects of sensorimotor circuit formation. More generally, they suggest that regional astrocyte heterogeneity may help to coordinate postnatal neural circuit refinement.


Asunto(s)
Astrocitos/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Astrocitos/citología , Axones/fisiología , Polaridad Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Semaforina-3A/deficiencia , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Células Receptoras Sensoriales/citología , Médula Espinal/citología , Sinapsis/metabolismo
14.
Annu Rev Neurosci ; 34: 21-43, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21692657

RESUMEN

The developmental process of myelination and the adult regenerative process of remyelination share the common objective of investing nerve axons with myelin sheaths. A central question in myelin biology is the extent to which the mechanisms of these two processes are conserved, a concept encapsulated in the recapitulation hypothesis of remyelination. This question also has relevance for translating myelin biology into a better understanding of and eventual treatments for human myelin disorders. Here we review the current evidence for the recapitulation hypothesis and discuss recent findings in the development and regeneration of myelin in the context of human neurological disease.


Asunto(s)
Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Animales , Tipificación del Cuerpo/fisiología , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Leucoencefalopatías/fisiopatología , Modelos Biológicos , Oligodendroglía/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología
15.
Brain ; 141(1): 85-98, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244098

RESUMEN

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest.


Asunto(s)
Clemastina/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/etiología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Hipoxia Encefálica/complicaciones , Recuperación de la Función/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/ultraestructura , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia Encefálica/diagnóstico por imagen , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Nervio Óptico/fisiopatología , Oxígeno/farmacología , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
16.
Glia ; 66(1): 5-14, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28940651

RESUMEN

In the central nervous system, oligodendrocyte precursor cells are exclusive in their potential to differentiate into myelinating oligodendrocytes. Oligodendrocyte precursor cells migrate within the parenchyma and extend cell membrane protrusions that ultimately evolve into myelinating sheaths able to wrap neuronal axons and significantly increase their electrical conductivity. The subcellular force generating mechanisms driving morphological and functional transformations during oligodendrocyte differentiation and myelination remain elusive. In this review, we highlight the mechanical processes governing oligodendrocyte plasticity in a dynamic interaction with the extracellular matrix.


Asunto(s)
Diferenciación Celular/fisiología , Plasticidad de la Célula/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Animales , Sistema Nervioso Central/fisiología , Matriz Extracelular/metabolismo , Humanos
17.
Glia ; 66(9): 1947-1959, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29722913

RESUMEN

Proper peripheral myelination depends upon the balance between Schwann cell proliferation and differentiation programs. The serine/threonine kinase mTOR integrates various environmental cues to serve as a central regulator of cell growth, metabolism, and function. We report here that tuberous sclerosis complex 1 (TSC1), a negative regulator of mTOR activity, establishes a stage-dependent program for Schwann cell lineage progression and myelination by controlling cell proliferation and myelin homeostasis. Tsc1 ablation in Schwann cell progenitors in mice resulted in activation of mTOR signaling, and caused over-proliferation of Schwann cells and blocked their differentiation, leading to hypomyelination. Transcriptome profiling analysis revealed that mTOR activation in Tsc1 mutants resulted in upregulation of a polo-like kinase (PLK)-dependent pathway and cell cycle regulators. Attenuation of mTOR or pharmacological inhibition of polo-like kinases partially rescued hypomyelination caused by Tsc1 loss in the developing peripheral nerves. In contrast, deletion of Tsc1 in mature Schwann cells led to redundant and overgrown myelin sheaths in adult mice. Together, our findings indicate stage-specific functions for the TSC1-mTOR-PLK signaling axis in controlling the transition from proliferation to differentiation and myelin homeostasis during Schwann cell development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/fisiología , Homeostasis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células de Schwann/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Femenino , Homeostasis/efectos de los fármacos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pteridinas/farmacología , Células de Schwann/efectos de los fármacos , Células de Schwann/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Nervio Ciático/patología , Transcriptoma , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Quinasa Tipo Polo 1
18.
Lancet ; 390(10111): 2481-2489, 2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29029896

RESUMEN

BACKGROUND: Multiple sclerosis is a degenerative inflammatory disease of the CNS characterised by immune-mediated destruction of myelin and progressive neuroaxonal loss. Myelin in the CNS is a specialised extension of the oligodendrocyte plasma membrane and clemastine fumarate can stimulate differentiation of oligodendrocyte precursor cells in vitro, in animal models, and in human cells. We aimed to analyse the efficacy and safety of clemastine fumarate as a treatment for patients with multiple sclerosis. METHODS: We did this single-centre, 150-day, double-blind, randomised, placebo-controlled, crossover trial (ReBUILD) in patients with relapsing multiple sclerosis with chronic demyelinating optic neuropathy on stable immunomodulatory therapy. Patients who fulfilled international panel criteria for diagnosis with disease duration of less than 15 years were eligible. Patients were randomly assigned (1:1) via block randomisation using a random number generator to receive either clemastine fumarate (5·36 mg orally twice daily) for 90 days followed by placebo for 60 days (group 1), or placebo for 90 days followed by clemastine fumarate (5·36 mg orally twice daily) for 60 days (group 2). The primary outcome was shortening of P100 latency delay on full-field, pattern-reversal, visual-evoked potentials. We analysed by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT02040298. FINDINGS: Between Jan 1, 2014, and April 11, 2015, we randomly assigned 50 patients to group 1 (n=25) or group 2 (n=25). All patients completed the study. The primary efficacy endpoint was met with clemastine fumarate treatment, which reduced the latency delay by 1·7 ms/eye (95% CI 0·5-2·9; p=0·0048) when analysing the trial as a crossover. Clemastine fumarate treatment was associated with fatigue, but no serious adverse events were reported. INTERPRETATION: To our knowledge, this is the first randomised controlled trial to document efficacy of a remyelinating drug for the treatment of chronic demyelinating injury in multiple sclerosis. Our findings suggest that myelin repair can be achieved even following prolonged damage. FUNDING: University of California, San Francisco and the Rachleff Family.


Asunto(s)
Clemastina/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Adulto , Estudios Cruzados , Método Doble Ciego , Potenciales Evocados Visuales/efectos de los fármacos , Femenino , Humanos , Masculino , Remielinización/efectos de los fármacos , Tomografía de Coherencia Óptica , Resultado del Tratamiento
19.
J Neurosci ; 36(3): 806-13, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791211

RESUMEN

Oligodendrocyte progenitors respond to biophysical or mechanical signals, and it has been reported that mechanostimulation modulates cell proliferation, migration, and differentiation. Here we report the effect of three mechanical stimuli on mouse oligodendrocyte progenitor differentiation and identify the molecular components of the linker of nucleoskeleton and cytoskeleton (LINC) complex (i.e., SYNE1) as transducers of mechanical signals to the nucleus, where they modulate the deposition of repressive histone marks and heterochromatin formation. The expression levels of LINC components increased during progenitor differentiation and silencing the Syne1 gene resulted in aberrant histone marks deposition, chromatin reorganization and impaired myelination. We conclude that spatial constraints, via the actin cytoskeleton and LINC complex, mediate nuclear changes in oligodendrocyte progenitors that favor a default pathway of differentiation. Significance statement: It is recognized that oligodendrocyte progenitors are mechanosensitive cells. However, the molecular mechanisms translating mechanical stimuli into oligodendrocyte differentiation remain elusive. This study identifies components of the mechanotransduction pathway in the oligodendrocyte lineage.


Asunto(s)
Núcleo Celular/metabolismo , Epigénesis Genética/fisiología , Mecanotransducción Celular/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Nucleares/biosíntesis , Oligodendroglía/fisiología , Animales , Núcleo Celular/genética , Proteínas del Citoesqueleto , Femenino , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética
20.
J Neurosci ; 36(26): 6937-48, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358452

RESUMEN

UNLABELLED: Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT: Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons altering action potential conduction velocity. Such a mechanism would allow for variations in conduction velocities that provide a degree of plasticity in accordance to environmental needs. It will be important in future work to investigate how these changes in myelination and conduction velocity contribute to signal integration in postsynaptic neurons and circuit function.


Asunto(s)
Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/fisiología , Nervio Óptico/fisiología , Visión Monocular/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Antígenos/genética , Antígenos/metabolismo , Toxina del Cólera/metabolismo , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/ultraestructura , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/ultraestructura , Conducción Nerviosa/genética , Nervio Óptico/ultraestructura , Organogénesis/genética , Organogénesis/fisiología , Estimulación Luminosa , Proteoglicanos/genética , Proteoglicanos/metabolismo , Células Ganglionares de la Retina/metabolismo , Transmisión Sináptica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vías Visuales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA