Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 562(7728): 526-531, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333627

RESUMEN

The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for specific gene networks in the drug response. Collectively, we have generated a dataset-accessible through the Beat AML data viewer (Vizome)-that can be leveraged to address clinical, genomic, transcriptomic and functional analyses of the biology of AML.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Genómica , Leucemia Mieloide Aguda/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Conjuntos de Datos como Asunto , Exoma/genética , Femenino , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Terapia Molecular Dirigida , Proteínas Nucleares/genética , Nucleofosmina , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Análisis de Secuencia de ARN , Factores de Empalme Serina-Arginina/genética
2.
Blood ; 137(7): 939-944, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32898857

RESUMEN

Blinatumomab is currently approved for use as a single agent in relapsed and refractory acute lymphoblastic leukemia (ALL). Cytotoxicity is mediated via signaling through the T-cell receptor (TCR). There is now much interest in combining blinatumomab with targeted therapies, particularly in Philadelphia chromosome-positive ALL (Ph+ ALL). However, some second- and third-generation ABL inhibitors also potently inhibit Src family kinases that are important in TCR signaling. We combined ABL inhibitors and dual Src/ABL inhibitors with blinatumomab in vitro from both healthy donor samples and primary samples from patients with Ph+ ALL. Blinatumomab alone led to both T-cell proliferation and elimination of target CD19+ cells and enhanced production of interferon-γ (IFN-γ). The addition of the ABL inhibitors imatinib or nilotinib to blinatumomab did not inhibit T-cell proliferation or IFN-γ production. However, the addition of dasatinib or ponatinib inhibited T-cell proliferation and IFN-γ production. Importantly, there was no loss of CD19+ cells treated with blinatumomab plus dasatinib or ponatinib in healthy samples or samples with a resistant ABL T315I mutation by dasatinib in combination with blinatumomab. These in vitro findings bring pause to the excitement of combination therapies, highlighting the importance of maintaining T-cell function with targeted therapies.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Linfocitos T/inmunología , Familia-src Quinasas/antagonistas & inhibidores , Linfocitos B , Dasatinib/farmacología , Humanos , Mesilato de Imatinib/farmacología , Imidazoles/farmacología , Ensayos de Liberación de Interferón gamma , Células Jurkat , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Mutación Missense , Proteínas de Neoplasias/fisiología , Fosforilación/efectos de los fármacos , Mutación Puntual , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-abl/genética , Piridazinas/farmacología , Pirimidinas/farmacología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/enzimología , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Familia-src Quinasas/fisiología
3.
Am J Hematol ; 97(5): 613-622, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35180323

RESUMEN

Survival outcomes for relapsed/refractory pediatric acute myeloid leukemia (R/R AML) remain dismal. Epigenetic changes can result in gene expression alterations which are thought to contribute to both leukemogenesis and chemotherapy resistance. We report results from a phase I trial with a dose expansion cohort investigating decitabine and vorinostat in combination with fludarabine, cytarabine, and G-CSF (FLAG) in pediatric patients with R/R AML [NCT02412475]. Thirty-seven patients enrolled with a median age at enrollment of 8.4 (range, 1-20) years. There were no dose limiting toxicities among the enrolled patients, including two patients with Down syndrome. The recommended phase 2 dose of decitabine in combination with vorinostat and FLAG was 10 mg/m2 . The expanded cohort design allowed for an efficacy evaluation and the overall response rate among 35 evaluable patients was 54% (16 complete response (CR) and 3 complete response with incomplete hematologic recovery (CRi)). Ninety percent of responders achieved minimal residual disease (MRD) negativity (<0.1%) by centralized flow cytometry and 84% (n = 16) successfully proceeded to hematopoietic stem cell transplant. Two-year overall survival was 75.6% [95%CI: 47.3%, 90.1%] for MRD-negative patients vs. 17.9% [95%CI: 4.4%, 38.8%] for those with residual disease (p < .001). Twelve subjects (34%) had known epigenetic alterations with 8 (67%) achieving a CR, 7 (88%) of whom were MRD negative. Correlative pharmacodynamics demonstrated the biologic activity of decitabine and vorinostat and identified specific gene enrichment signatures in nonresponding patients. Overall, this therapy was well-tolerated, biologically active, and effective in pediatric patients with R/R AML, particularly those with epigenetic alterations.


Asunto(s)
Leucemia Mieloide Aguda , Linfoma , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Niño , Citarabina , Decitabina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Linfoma/tratamiento farmacológico , Vorinostat
4.
EMBO Rep ; 20(7): e47546, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267709

RESUMEN

Progressive remodeling of the bone marrow microenvironment is recognized as an integral aspect of leukemogenesis. Expanding acute myeloid leukemia (AML) clones not only alter stroma composition, but also actively constrain hematopoiesis, representing a significant source of patient morbidity and mortality. Recent studies revealed the surprising resistance of long-term hematopoietic stem cells (LT-HSC) to elimination from the leukemic niche. Here, we examine the fate and function of residual LT-HSC in the BM of murine xenografts with emphasis on the role of AML-derived extracellular vesicles (EV). AML-EV rapidly enter HSC, and their trafficking elicits protein synthesis suppression and LT-HSC quiescence. Mechanistically, AML-EV transfer a panel of miRNA, including miR-1246, that target the mTOR subunit Raptor, causing ribosomal protein S6 hypo-phosphorylation, which in turn impairs protein synthesis in LT-HSC. While HSC functionally recover from quiescence upon transplantation to an AML-naive environment, they maintain relative gains in repopulation capacity. These phenotypic changes are accompanied by DNA double-strand breaks and evidence of a sustained DNA-damage response. In sum, AML-EV contribute to niche-dependent, reversible quiescence and elicit persisting DNA damage in LT-HSC.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Nicho de Células Madre , Animales , Línea Celular Tumoral , Células Cultivadas , Roturas del ADN de Doble Cadena , Femenino , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Proteína S6 Ribosómica/genética
5.
Blood ; 129(11): e26-e37, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28122742

RESUMEN

Drug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material. Stromal coculture did not prevent leukemia cell cycle activity, but a specific sensitivity profile to cell cycle-related drugs identified samples with higher cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with refractory relapses, individual patterns of marked drug resistance and exceptional responses to new agents of immediate clinical relevance were detected. The BCL2-inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL) subsets, including MLL-AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs), predicting in vivo activity as a single agent and in combination with dexamethasone and vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentration values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission. Thus, drug profiling captures disease-relevant features and unexpected sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop drug repurposing strategies for patients with urgent medical needs.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Células Cultivadas , Técnicas de Cocultivo , Xenoinjertos , Humanos , Células Madre Mesenquimatosas/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
7.
Pediatr Hematol Oncol ; 34(6-7): 355-364, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29190164

RESUMEN

During the 2016 Therapeutic Advances for Childhood Leukemia & Lymphoma (TACL) Consortium investigators' meeting (Los Angeles, CA), a Biology Working Group was established to support the consortium's mission of developing innovative therapies for currently incurable childhood leukemias and lymphomas. The charge of the Biology Working Group was to address how TACL could advance biological investigations of pediatric relapsed/refractory hematologic malignancies while undertaking forward-looking therapeutic trials. To this end, the TACL Biology Committee was established to provide the scientific platform needed to further develop preclinical and translational studies that will advance the understanding and treatment of relapsed and refractory disease. The Biology Committee will focus on ensuring state-of-the-art studies that address biological components of early phase clinical trials, and developing a central biology bank of materials from these early phase trials for interrogations into the mechanisms of disease resistance.


Asunto(s)
Leucemia , Linfoma , Investigación Biomédica Traslacional , Enfermedad Aguda , Adolescente , Niño , Preescolar , Congresos como Asunto , Femenino , Humanos , Lactante , Recién Nacido , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Leucemia/terapia , Masculino , Recurrencia
8.
N Engl J Med ; 368(19): 1781-90, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23656643

RESUMEN

BACKGROUND: The molecular causes of many hematologic cancers remain unclear. Among these cancers are chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL1-negative) chronic myeloid leukemia (CML), both of which are diagnosed on the basis of neoplastic expansion of granulocytic cells and exclusion of genetic drivers that are known to occur in other myeloproliferative neoplasms and myeloproliferative-myelodysplastic overlap neoplasms. METHODS: To identify potential genetic drivers in these disorders, we used an integrated approach of deep sequencing coupled with the screening of primary leukemia cells obtained from patients with CNL or atypical CML against panels of tyrosine kinase-specific small interfering RNAs or small-molecule kinase inhibitors. We validated candidate oncogenes using in vitro transformation assays, and drug sensitivities were validated with the use of assays of primary-cell colonies. RESULTS: We identified activating mutations in the gene encoding the receptor for colony-stimulating factor 3 (CSF3R) in 16 of 27 patients (59%) with CNL or atypical CML. These mutations segregate within two distinct regions of CSF3R and lead to preferential downstream kinase signaling through SRC family-TNK2 or JAK kinases and differential sensitivity to kinase inhibitors. A patient with CNL carrying a JAK-activating CSF3R mutation had marked clinical improvement after the administration of the JAK1/2 inhibitor ruxolitinib. CONCLUSIONS: Mutations in CSF3R are common in patients with CNL or atypical CML and represent a potentially useful criterion for diagnosing these neoplasms. (Funded by the Leukemia and Lymphoma Society and others.).


Asunto(s)
Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/genética , Leucemia Neutrofílica Crónica/genética , Mutación , Receptores del Factor Estimulante de Colonias/genética , Animales , Humanos , Quinasas Janus/antagonistas & inhibidores , Leucemia Linfoide/genética , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/diagnóstico , Leucemia Neutrofílica Crónica/diagnóstico , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , ARN Interferente Pequeño , Transducción de Señal/fisiología
10.
Genome Res ; 22(10): 1833-44, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22628462

RESUMEN

Abnormal replication timing has been observed in cancer but no study has comprehensively evaluated this misregulation. We generated genome-wide replication-timing profiles for pediatric leukemias from 17 patients and three cell lines, as well as normal B and T cells. Nonleukemic EBV-transformed lymphoblastoid cell lines displayed highly stable replication-timing profiles that were more similar to normal T cells than to leukemias. Leukemias were more similar to each other than to B and T cells but were considerably more heterogeneous than nonleukemic controls. Some differences were patient specific, while others were found in all leukemic samples, potentially representing early epigenetic events. Differences encompassed large segments of chromosomes and included genes implicated in other types of cancer. Remarkably, differences that distinguished leukemias aligned in register to the boundaries of developmentally regulated replication-timing domains that distinguish normal cell types. Most changes did not coincide with copy-number variation or translocations. However, many of the changes that were associated with translocations in some leukemias were also shared between all leukemic samples independent of the genetic lesion, suggesting that they precede and possibly predispose chromosomes to the translocation. Altogether, our results identify sites of abnormal developmental control of DNA replication in cancer that reveal the significance of replication-timing boundaries to chromosome structure and function and support the replication domain model of replication-timing regulation. They also open new avenues of investigation into the chromosomal basis of cancer and provide a potential novel source of epigenetic cancer biomarkers.


Asunto(s)
Momento de Replicación del ADN , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Cariotipo Anormal , Línea Celular , Niño , Variaciones en el Número de Copia de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Heterogeneidad Genética , Humanos , Leucemia/genética , Linfocitos/metabolismo , Translocación Genética
11.
Pediatr Blood Cancer ; 62(7): 1149-54, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25728418

RESUMEN

BACKGROUND: Treatment of acute myeloid leukemia (AML) comes with a significant risk of life-threatening infection during periods of prolonged severe neutropenia. We studied the impact of preventive intravenous (IV) antibiotic administration at onset of absolute neutropenia on the incidence and outcome of life-threatening infections during treatment of childhood AML. PROCEDURES: This is a retrospective study on pediatric patients (aged 0-18 years) consecutively diagnosed with de novo AML and treated at a single institution from April 2005 through February 2013. Patients were treated on the Children's Oncology Group (COG) AAML0531 protocol or with a modified United Kingdom Medical Research Council (UK MRC) AML 10 regimen. Pertinent data were extracted from hard copy or electronic chart review. RESULTS: A total of 76 chemotherapy phases were analyzed from 29 patients. In each phase reported, preventive antibiotics were initiated when the daily absolute neutrophil count was <500 cells/mcl, before onset of fever. Seven episodes of bacteremia were documented with predominantly coagulase-negative staphylococci and viridans group streptococci. One infection-related death occurred, attributed to progressive respiratory failure occurring months after documented candidal pneumonia. CONCLUSIONS: Initiation of preventive antibiotics at the onset of absolute neutropenia was associated with no mortality from bacteremia. This preventive approach appears feasible and safe.


Asunto(s)
Antibacterianos/uso terapéutico , Leucemia Mieloide Aguda/complicaciones , Infecciones Oportunistas/prevención & control , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Leucemia Mieloide Aguda/microbiología , Masculino , Estadificación de Neoplasias , Infecciones Oportunistas/etiología , Pronóstico , Estudios Retrospectivos
13.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798550

RESUMEN

PTPN11 encodes for a tyrosine phosphatase implicated in the pathogenesis of hematologic malignancies such as Juvenile Myelomonocytic Leukemia (JMML), Acute Myeloid Leukemia (AML), and Acute Lymphoblastic Leukemia (ALL). Since activating mutations of PTPN11 increase proliferative signaling and cell survival through the RAS/MAPK proliferative pathway there is significant interest in using MEK inhibitors for clinical benefit. Yet, single agent clinical activity has been minimal. Previously, we showed that PTPN11 is further activated by upstream tyrosine kinases TNK2/SRC, and that PTPN11-mutant JMML and AML cells are sensitive to TNK2 inhibition using dasatinib. In order to validate these findings, we adopted a genetically engineered mouse model of PTPN11 driven leukemia using the mouse strain 129S/Sv- Ptpn11 tm6Bgn /Mmucd crossed with B6.129P2- Lyz2 tm1(cre)Ifo /J. The F1 progeny expressing Ptpn11 D61Y within hematopoietic cells destined along the granulocyte-monocyte progenitor lineage developed a fatal myeloproliferative disorder characterized by neutrophilia and monocytosis, and infiltration of myeloid cells into the liver and spleen. Cohorts of Ptpn11 D61Y expressing animals treated with combination of dasatinib and trametinib for an extended period of time was well tolerated and had a significant effect in mitigating disease parameters compared to single agents. Finally, a primary patient-derived xenograft model using a myeloid leukemia with PTPN11 F71L also displayed improved disease response to combination. Collectively, these studies point to combined therapies targeting MEK and TNK2/SRC as a promising therapeutic potential for PTPN11-mutant leukemias. Key Points: Combining MEK and TNK2/SRC inhibitors has therapeutic potential in PTPN11 mutant JMML and AML.

14.
Cancers (Basel) ; 16(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38339248

RESUMEN

Improvements in survival have been made over the past two decades for childhood acute myeloid leukemia (AML), but the approximately 40% of patients who relapse continue to have poor outcomes. A combination of checkpoint-inhibitor nivolumab and azacitidine has demonstrated improvements in median survival in adults with AML. This phase I/II study with nivolumab and azacitidine in children with relapsed/refractory AML (NCT03825367) was conducted through the Therapeutic Advances in Childhood Leukemia & Lymphoma consortium. Thirteen patients, median age 13.7 years, were enrolled. Patients had refractory disease with multiple reinduction attempts. Twelve evaluable patients were treated at the recommended phase II dose (established at dose level 1, 3 mg/kg/dose). Four patients (33%) maintained stable disease. This combination was well tolerated, with no dose-limiting toxicities observed. Grade 3-4 adverse events (AEs) were primarily hematological. Febrile neutropenia was the most common AE ≥ grade 3. A trend to improved quality of life was noted. Increases in CD8+ T cells and reductions in CD4+/CD8+ T cells and demethylation were observed. The combination was well tolerated and had an acceptable safety profile in pediatric patients with relapsed/refractory AML. Future studies might explore this combination for the maintenance of remission in children with AML at high risk of relapse.

15.
Blood Cancer Discov ; 4(6): 452-467, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698624

RESUMEN

The BCL2 inhibitor venetoclax combined with the hypomethylating agent azacytidine shows significant clinical benefit in a subset of patients with acute myeloid leukemia (AML); however, resistance limits response and durability. We prospectively profiled the ex vivo activity of 25 venetoclax-inclusive combinations on primary AML patient samples to identify those with improved potency and synergy compared with venetoclax + azacytidine (Ven + azacytidine). Combination sensitivities correlated with tumor cell state to discern three patterns: primitive selectivity resembling Ven + azacytidine, monocytic selectivity, and broad efficacy independent of cell state. Incorporation of immunophenotype, mutation, and cytogenetic features further stratified combination sensitivity for distinct patient subtypes. We dissect the biology underlying the broad, cell state-independent efficacy for the combination of venetoclax plus the JAK1/2 inhibitor ruxolitinib. Together, these findings support opportunities for expanding the impact of venetoclax-based drug combinations in AML by leveraging clinical and molecular biomarkers associated with ex vivo responses. SIGNIFICANCE: By mapping drug sensitivity data to clinical features and tumor cell state, we identify novel venetoclax combinations targeting patient subtypes who lack sensitivity to Ven + azacytidine. This provides a framework for a taxonomy of AML informed by readily available sets of clinical and genetic features obtained as part of standard care. See related commentary by Becker, p. 437 . This article is featured in Selected Articles from This Issue, p. 419.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Azacitidina/farmacología , Azacitidina/uso terapéutico
16.
Clin Cancer Res ; 29(20): 4230-4241, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37199721

RESUMEN

PURPOSE: Targeted therapeutics are a goal of medicine. Methods for targeting T-cell lymphoma lack specificity for the malignant cell, leading to elimination of healthy cells. The T-cell receptor (TCR) is designed for antigen recognition. T-cell malignancies expand from a single clone that expresses one of 48 TCR variable beta (Vß) genes, providing a distinct therapeutic target. We hypothesized that a mAb that is exclusive to a specific Vß would eliminate the malignant clone while having minimal effects on healthy T cells. EXPERIMENTAL DESIGN: We identified a patient with large granular T-cell leukemia and sequenced his circulating T-cell population, 95% of which expressed Vß13.3. We developed a panel of anti-Vß13.3 antibodies to test for binding and elimination of the malignant T-cell clone. RESULTS: Therapeutic antibody candidates bound the malignant clone with high affinity. Antibodies killed engineered cell lines expressing the patient TCR Vß13.3 by antibody-dependent cellular cytotoxicity and TCR-mediated activation-induced cell death, and exhibited specific killing of patient malignant T cells in combination with exogenous natural killer cells. EL4 cells expressing the patient's TCR Vß13.3 were also killed by antibody administration in an in vivo murine model. CONCLUSIONS: This approach serves as an outline for development of therapeutics that can treat clonal T-cell-based malignancies and potentially other T-cell-mediated diseases. See related commentary by Varma and Diefenbach, p. 4024.


Asunto(s)
Linfoma de Células T , Receptores de Antígenos de Linfocitos T , Humanos , Ratones , Animales , Rituximab , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología
17.
Pediatr Blood Cancer ; 59(3): 576-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22038978

RESUMEN

Patients with t(17;19) acute lymphoblastic leukemia (ALL) have a dismal prognosis even with the most intensive current therapies that include stem cell transplant. We present the case of a patient with t(17;19)(q22;p13) gene rearranged B-cell precursor ALL whose lymphoblasts were found to have significant in vitro sensitivity to dasatinib. The patient tolerated the addition of dasatinib with combination therapy and remained in remission for over nine months until his recurrence. Therefore, future studies will be needed to interrogate whether dasatinib has any therapeutic benefit in children with t(17;19) B-cell precursor ALL.


Asunto(s)
Antineoplásicos/uso terapéutico , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 19 , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Tiazoles/uso terapéutico , Translocación Genética , Dasatinib , Humanos , Técnicas In Vitro , Linfocitos/efectos de los fármacos , Masculino
18.
Proc Natl Acad Sci U S A ; 106(21): 8695-700, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19433805

RESUMEN

Targeted therapy has vastly improved outcomes in certain types of cancer. Extension of this paradigm across a broad spectrum of malignancies will require an efficient method to determine the molecular vulnerabilities of cancerous cells. Improvements in sequencing technology will soon enable high-throughput sequencing of entire genomes of cancer patients; however, determining the relevance of identified sequence variants will require complementary functional analyses. Here, we report an RNAi-assisted protein target identification (RAPID) technology that individually assesses targeting of each member of the tyrosine kinase gene family. We demonstrate that RAPID screening of primary leukemia cells from 30 patients identifies targets that are critical to survival of the malignant cells from 10 of these individuals. We identify known, activating mutations in JAK2 and K-RAS, as well as patient-specific sensitivity to down-regulation of FLT1, CSF1R, PDGFR, ROR1, EPHA4/5, JAK1/3, LMTK3, LYN, FYN, PTK2B, and N-RAS. We also describe a previously undescribed, somatic, activating mutation in the thrombopoietin receptor that is sensitive to down-stream pharmacologic inhibition. Hence, the RAPID technique can quickly identify molecular vulnerabilities in malignant cells. Combination of this technique with whole-genome sequencing will represent an ideal tool for oncogenic target identification such that specific therapies can be matched with individual patients.


Asunto(s)
Leucemia/genética , Leucemia/terapia , Interferencia de ARN , Alelos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia/metabolismo , Mutación/genética , Receptores de Trombopoyetina/genética , Factores de Tiempo , Resultado del Tratamiento
19.
Blood Adv ; 6(10): 3062-3067, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35078224

RESUMEN

Using ex vivo drug screening of primary patient specimens, we identified the combination of the p38 MAPK inhibitor doramapimod (DORA) with the BCL2 inhibitor venetoclax (VEN) as demonstrating broad, enhanced efficacy compared with each single agent across 335 acute myeloid leukemia (AML) patient samples while sparing primary stromal cells. Single-agent DORA and VEN sensitivity was associated with distinct, nonoverlapping tumor cell differentiation states. In particular, increased monocytes, M4/M5 French-American-British classification, and CD14+ immunophenotype tracked with sensitivity to DORA and resistance to VEN but were mitigated with the combination. Increased expression of MAPK14 and BCL2, the respective primary targets of DORA and VEN, were observed in monocytic and undifferentiated leukemias, respectively. Enrichment for DORA and VEN sensitivities was observed in AML with monocyte-like and progenitor-like transcriptomic signatures, respectively, and these associations diminished with the combination. The mechanism underlying the combination's enhanced efficacy may result from inhibition of p38 MAPK-mediated phosphorylation of BCL2, which in turn enhances sensitivity to VEN. These findings suggest exploiting complementary drug sensitivity profiles with respect to leukemic differentiation state, such as dual targeting of p38 MAPK and BCL2, offers opportunity for broad, enhanced efficacy across the clinically challenging heterogeneous landscape of AML.


Asunto(s)
Leucemia Mieloide Aguda , Diferenciación Celular , Humanos , Inmunofenotipificación , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
20.
Cancer Cell ; 40(8): 850-864.e9, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35868306

RESUMEN

Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.


Asunto(s)
Leucemia Mieloide Aguda , Diferenciación Celular , Estudios de Cohortes , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Receptores de Superficie Celular/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA