RESUMEN
Hydrogen peroxide (H2O2) is a prime member of the reactive oxygen species (ROS) family of molecules produced during normal cell function and in response to various stimuli, but if left unchecked, it can inflict oxidative damage on all types of biological macromolecules and lead to cell death. In this context, a major source of H2O2 for redox signaling purposes is the NADPH oxidase (Nox) family of enzymes, which were classically studied for their roles in phagocytic immune response but have now been found to exist in virtually all mammalian cell types in various isoforms with distinct tissue and subcellular localizations. Downstream of this tightly regulated ROS generation, site-specific, reversible covalent modification of proteins, particularly oxidation of cysteine thiols to sulfenic acids, represents a prominent posttranslational modification akin to phosphorylation as an emerging molecular mechanism for transforming an oxidant signal into a dynamic biological response. We review two complementary types of chemical tools that enable (a) specific detection of H2O2 generated at its sources and (b) mapping of sulfenic acid posttranslational modification targets that mediate its signaling functions, which can be used to study this important chemical signal in biological systems.
Asunto(s)
Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Animales , Humanos , Oxidación-Reducción , Ácidos Sulfénicos/metabolismoRESUMEN
Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.
Asunto(s)
Cationes , Ciclización , Indicadores y Reactivos , Proteínas , Triptófano , Cationes/química , Indicadores y Reactivos/química , Oxidación-Reducción , Proteoma/química , Triptófano/química , Péptidos/química , Química Clic , Proteínas/químicaRESUMEN
Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.
Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas , Hormonas Tiroideas/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Metionina , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/genética , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Neoplasias PancreáticasRESUMEN
Impaired DNA crosslink repair leads to Fanconi anemia (FA), characterized by a unique manifestation of bone marrow failure and pancytopenia among diseases caused by DNA damage response defects. As a germline disorder, why the hematopoietic hierarchy is specifically affected is not fully understood. We find that reprogramming transcription during hematopoietic differentiation results in an overload of genotoxic stress, which causes aborted differentiation and depletion of FA mutant progenitor cells. DNA damage onset most likely arises from formaldehyde, an obligate by-product of oxidative protein demethylation during transcription regulation. Our results demonstrate that rapid and extensive transcription reprogramming associated with hematopoietic differentiation poses a major threat to genome stability and cell viability in the absence of the FA pathway. The connection between differentiation and DNA damage accumulation reveals a novel mechanism of genome scarring and is critical to exploring therapies to counteract the aplastic anemia for the treatment of FA patients.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/genética , Anemia de Fanconi/genética , Formaldehído/toxicidad , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Anemia de Fanconi/sangre , Anemia de Fanconi/patología , Formaldehído/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Inestabilidad Genómica/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células K562 , Transcripción GenéticaRESUMEN
MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2-MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2-MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ferroptosis/genética , Metabolismo de los Lípidos/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Proteínas de Ciclo Celular/genética , Glioblastoma/fisiopatología , Células HCT116 , Humanos , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Interferencia de ARN , Ratas , Proteína p53 Supresora de Tumor/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismoRESUMEN
Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cobre , Homeostasis , Mitocondrias , Neuroglía , Estrés Oxidativo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Mitocondrias/metabolismo , Cobre/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglía/metabolismo , Neuronas Dopaminérgicas/metabolismo , Supervivencia Celular , Neuronas/metabolismoRESUMEN
Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.
Asunto(s)
Elementos de Respuesta Antioxidante , Hierro , Humanos , Hierro/metabolismo , Colorantes Fluorescentes/química , Factor 2 Relacionado con NF-E2/metabolismo , Ferritinas/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Línea Celular Tumoral , Antioxidantes/metabolismoRESUMEN
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Asunto(s)
Colorantes Fluorescentes , Oxidación-Reducción , Colorantes Fluorescentes/química , Humanos , Metales/química , Metales/metabolismo , Animales , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Microscopía FluorescenteRESUMEN
Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a Gi-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also Gi-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.
Asunto(s)
Receptores Acoplados a Proteínas G , Pez Cebra , Animales , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Opsinas , Opsinas de Bastones , Neuronas , Cilios/fisiologíaRESUMEN
Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.
Asunto(s)
Cobre , Síndrome del Pelo Ensortijado , Ratones , Animales , ATPasas Transportadoras de Cobre , Cobre/metabolismo , Plexo Coroideo/metabolismo , Síndrome del Pelo Ensortijado/metabolismo , Encéfalo/metabolismoRESUMEN
Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.
Asunto(s)
Cobre , Colorantes Fluorescentes , Cobre/metabolismo , Colorantes Fluorescentes/química , Glutatión/metabolismo , Imidazoles , Oncogenes , Oxidación-ReducciónRESUMEN
Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.
Asunto(s)
NAD , Neoplasias , Humanos , Hidrogenación , NAD/metabolismo , Carbono , Formiatos/químicaRESUMEN
Reactive oxygen species (ROS) like hydrogen peroxide (H2O2) are transient species that have broad actions in signaling and stress, but spatioanatomical understanding of their biology remains insufficient. Here, we report a tandem activity-based sensing and labeling strategy for H2O2 imaging that enables capture and permanent recording of localized H2O2 fluxes. Peroxy Green-1 Fluoromethyl (PG1-FM) is a diffusible small-molecule probe that senses H2O2 by a boronate oxidation reaction to trigger dual release and covalent labeling of a fluorescent product, thus preserving spatial information on local H2O2 changes. This unique reagent enables visualization of transcellular redox signaling in a microglia-neuron coculture cell model, where selective activation of microglia for ROS production increases H2O2 in nearby neurons. In addition to identifying ROS-mediated cell-to-cell communication, this work provides a starting point for the design of chemical probes that can achieve high spatial fidelity by combining activity-based sensing and labeling strategies.
Asunto(s)
Colorantes Fluorescentes/metabolismo , Peróxido de Hidrógeno/metabolismo , Microglía/metabolismo , Sondas Moleculares/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Ácidos Borónicos/química , Comunicación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Técnicas de Cocultivo , Embrión de Mamíferos , Colorantes Fluorescentes/síntesis química , Células HeLa , Humanos , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Sondas Moleculares/síntesis química , Neuronas/citología , Neuronas/efectos de los fármacos , Oxidación-Reducción , Paraquat/farmacología , Células RAW 264.7 , Coloración y Etiquetado/métodosRESUMEN
Organoboron compounds are widely utilized in organic synthesis for their diverse reactivity, modular preparation, and stability compared to other classes of organometallic reagents. While organoboron species are commonly employed as nucleophiles in cross-coupling reactions, their potential as racemic building blocks in enantioconvergent transformations remains largely untapped. Herein, we demonstrate the direct utilization of alkylboronic pinacol esters in intermolecular enantioconvergent transformations. Specifically, this work describes the development and mechanistic study of an enantioconvergent deborylative cyanation enabled by Cu catalysis. This method imparts a high degree of enantioselectivity and tolerates a wide range of common functional groups and heterocycles. The reaction is proposed to proceed through a radical-relay mechanism. Aniline-assisted homolysis of the carbon-boron bond results in prochiral alkyl radicals that are functionalized by in situ generated Cu(II)(CN)2 species in an enantioselective fashion. The Cu(II)(CN)2 intermediate was characterized by electron paramagnetic resonance (EPR) spectroscopy, and its electronic structure was probed using density functional theory (DFT) calculations. Computational studies were carried out to corroborate the proposed radical-relay mechanism.
RESUMEN
The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.
Asunto(s)
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldehído/química , Formaldehído/metabolismo , Redes y Vías Metabólicas , Mutágenos/química , Mutágenos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Carbono/deficiencia , Línea Celular , Pollos , Coenzimas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Inactivación Metabólica , Ratones , Nucleótidos/biosíntesis , Oxidación-Reducción , Serina/química , Serina/metabolismo , Tetrahidrofolatos/metabolismoRESUMEN
This corrects the article DOI: 10.1038/nature23481.
RESUMEN
The AlkB family of nonheme Fe(II)/2-oxoglutarate-dependent oxygenases are essential regulators of RNA epigenetics by serving as erasers of one-carbon marks on RNA with release of formaldehyde (FA). Two major human AlkB family members, FTO and ALKBH5, both act as oxidative demethylases of N6-methyladenosine (m6A) but furnish different major products, N6-hydroxymethyladenosine (hm6A) and adenosine (A), respectively. Here we identify foundational mechanistic differences between FTO and ALKBH5 that promote these distinct biochemical outcomes. In contrast to FTO, which follows a traditional oxidative N-demethylation pathway to catalyze conversion of m6A to hm6A with subsequent slow release of A and FA, we find that ALKBH5 catalyzes a direct m6A-to-A transformation with rapid FA release. We identify a catalytic R130/K132/Y139 triad within ALKBH5 that facilitates release of FA via an unprecedented covalent-based demethylation mechanism with direct detection of a covalent intermediate. Importantly, a K132Q mutant furnishes an ALKBH5 enzyme with an m6A demethylation profile that resembles that of FTO, establishing the importance of this residue in the proposed covalent mechanism. Finally, we show that ALKBH5 is an endogenous source of FA in the cell by activity-based sensing of FA fluxes perturbed via ALKBH5 knockdown. This work provides a fundamental biochemical rationale for nonredundant roles of these RNA demethylases beyond different substrate preferences and cellular localization, where m6A demethylation by ALKBH5 versus FTO results in release of FA, an endogenous one-carbon unit but potential genotoxin, at different rates in living systems.
Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Hierro/metabolismo , ARN/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Secuencia de Bases , Desmetilación , Ácidos Grasos , Células HEK293 , Humanos , Hierro/química , Células MCF-7 , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , ARN/química , Análisis de la Célula IndividualRESUMEN
The field of chemical modification of proteins has been dominated by random modification of lysines or more site-specific labeling of cysteines, each with attendant challenges. Recently, we have developed oxaziridine chemistry for highly selective modification of methionine called redox-activated chemical tagging (ReACT) but have not broadly tested the molecular parameters for efficient and stable protein modification. Here we systematically scanned methionines throughout one of the most popular antibody scaffolds, trastuzumab, used for antibody engineering and drug conjugation. We tested the expression, reactivities, and stabilities of 123 single engineered methionines distributed over the surface of the antibody when reacted with oxaziridine. We found uniformly high expression for these mutants and excellent reaction efficiencies with a panel of oxaziridines. Remarkably, the stability to hydrolysis of the sulfimide varied more than 10-fold depending on temperature and the site of the engineered methionine. Interestingly, the most stable and reactive sites were those that were partially buried, presumably because of their reduced access to water. There was also a 10-fold variation in stability depending on the nature of the oxaziridine, which was determined to be inversely correlated with the electrophilic nature of the sulfimide. Importantly, the stabilities of the best analogs were sufficient to support their use as antibody drug conjugates and potent in a breast cancer mouse xenograft model over a month. These studies provide key parameters for broad application of ReACT for efficient, stable, and site-specific antibody and protein bioconjugation to native or engineered methionines.
Asunto(s)
Aziridinas/análisis , Inmunoconjugados/química , Metionina/análisis , Animales , Antineoplásicos/normas , Línea Celular Tumoral , Estabilidad de Medicamentos , Femenino , Humanos , Inmunoconjugados/genética , Inmunoconjugados/inmunología , Ratones , Ratones Desnudos , Ingeniería de Proteínas/métodos , Estabilidad ProteicaRESUMEN
Transition metal chemistry is essential to life, where metal binding to DNA, RNA, and proteins underpins all facets of the central dogma of biology. In this context, metals in proteins are typically studied as static active site cofactors. However, the emergence of transition metal signaling, where mobile metal pools can transiently bind to biological targets beyond active sites, is expanding this conventional view of bioinorganic chemistry. This Minireview focuses on the concept of metalloallostery, using copper as a canonical example of how metals can regulate protein function by binding to remote allosteric sites (e.g., exosites). We summarize advances in and prospects for the field, including imaging dynamic transition metal signaling pools, allosteric inhibition or activation of protein targets by metal binding, and metal-dependent signaling pathways that underlie nutrient vulnerabilities in diseases spanning obesity, fatty liver disease, cancer, and neurodegeneration.
Asunto(s)
Cobre , Elementos de Transición , Cobre/química , Dominio Catalítico , Química Bioinorgánica , Metales/metabolismo , Proteínas , Sitios de UniónRESUMEN
The electrochemical nitrate (NO3 - ) reduction reaction (NO3 RR) to ammonia (NH3 ) represents a sustainable approach for denitrification to balance global nitrogen cycles and an alternative to traditional thermal Haber-Bosch processes. Here, we present a supramolecular strategy for promoting NH3 production in water from NO3 RR by integrating two-dimensional (2D) molecular cobalt porphyrin (CoTPP) units into a three-dimensional (3D) porous organic cage architecture. The porphyrin box CoPB-C8 enhances electrochemical active site exposure, facilitates substrate-catalyst interactions, and improves catalyst stability, leading to turnover numbers and frequencies for NH3 production exceeding 200,000 and 56â s-1 , respectively. These values represent a 15-fold increase in NO3 RR activity and 200-mV improvement in overpotential for the 3D CoPB-C8 box structure compared to its 2D CoTPP counterpart. Synthetic tuning of peripheral alkyl substituents highlights the importance of supramolecular porosity and cavity size on electrochemical NO3 RR activity. These findings establish the incorporation of 2D molecular units into 3D confined space microenvironments as an effective supramolecular design strategy for enhancing electrocatalysis.