Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Am Chem Soc ; 145(4): 2630-2637, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657012

RESUMEN

Functional nucleic acids (FNAs), such as DNAzymes and DNA aptamers, can be engineered into circular forms for improved performance. Circular FNAs are promising candidates for bioanalytical and biomedical applications due to their intriguing properties of enhanced biological stability and compatibility with rolling circle amplification. They are typically made from linear single-stranded (ss) DNA molecules via ligase-mediated ligation. However, it remains a great challenge to synthesize circular ssDNA molecules in high yield due to inherent side reactions where two or more of the same ssDNA molecules are ligated. Herein, we present a strategy to overcome this issue by first using in vitro selection to search from a random-sequence DNA library a ligatable DNA aptamer that binds a DNA ligase and then by engineering this aptamer into a general-purpose templating DNA scaffold to guide the ligase to execute selective intramolecular circularization. We demonstrate the broad utility of this approach via the creation of several species of circular DNA molecules, including a circular DNAzyme sensor for a bacterium and a circular DNA aptamer sensor for a protein target with excellent detection sensitivity and specificity.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , ADN Catalítico/metabolismo , Aptámeros de Nucleótidos/química , Ligasas/metabolismo , Técnicas de Amplificación de Ácido Nucleico , ADN/química , ADN Circular , ADN de Cadena Simple
2.
Anal Chem ; 95(48): 17438-17443, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37991715

RESUMEN

Real-time biomolecular monitoring requires biosensors based on affinity reagents, such as aptamers, with moderate to low affinities for the best binding dynamics and signal gain. We recently reported Pro-SELEX, an approach that utilizes parallelized SELEX and high-content bioinformatics for the selection of aptamers with predefined binding affinities. The Pro-SELEX pipeline relies on an algorithm, termed AptaZ, that can predict the binding affinities of selected aptamers. The original AptaZ algorithm is computationally complex and slows the overall throughput of Pro-SELEX. Here, we present Apta FastZ, a rapid equivalent of AptaZ. The Apta FastZ algorithm considers the spare nature of the sequences from SELEX and is coded to avoid unnecessary comparison between sequences. As a result, Apta FastZ achieved a 10 to 40-fold faster computing speed compared to the original AptaZ algorithm while maintaining identical outcomes, allowing the bioinformatics to be completed within 1-10 h for large-scale data sets. We further validated the affinity of myeloperoxidase aptamers predicted by Apta FastZ by experiments and observed a high level of linear correlation between predicted scores and measured affinities. Taken together, the implementation of Apta FastZ could greatly accelerate the current Pro-SELEX workflow, allowing customized aptamers to be discovered within 3 days using preselected DNA libraries.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Técnica SELEX de Producción de Aptámeros , Biblioteca de Genes , Biología Computacional
3.
Small ; 19(41): e2303007, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37294164

RESUMEN

clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are increasingly used in biosensor development. However, directly translating recognition events for non-nucleic acid targets by CRISPR into effective measurable signals represents an important ongoing challenge. Herein, it is hypothesized and confirmed that CRISPR RNAs (crRNAs) in a circular topology efficiently render Cas12a incapable of both site-specific double-stranded DNA cutting and nonspecific single-stranded DNA trans cleavage. Importantly, it is shown that nucleic acid enzymes (NAzymes) with RNA-cleaving activity can linearize the circular crRNAs, activating CRISPR-Cas12a functions. Using ligand-responsive ribozymes and DNAzymes as molecular recognition elements, it is demonstrated that target-triggered linearization of circular crRNAs offers great versatility for biosensing. This strategy is termed as "NAzyme-Activated CRISPR-Cas12a with Circular CRISPR RNA (NA3C)." Use of NA3C for clinical evaluation of urinary tract infections using an Escherichia coli-responsive RNA-cleaving DNAzyme to test 40 patient urine samples, providing a diagnostic sensitivity of 100% and specificity of 90%, is further demonstrated.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Humanos , Sistemas CRISPR-Cas/genética , ARN Circular , ADN de Cadena Simple , ARN
4.
Chemistry ; 29(36): e202300240, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37086393

RESUMEN

Clostridium difficile frequently causes an infectious disease known as Clostridium difficile infection (CDI), and there is an urgent need for the development of more effective rapid diagnostic tests for CDI. Previously we have developed an RNA-cleaving fluorogenic DNAzyme (RFD) probe, named RFD-CD1, that is capable of detecting a specific strain of C. difficile but is too specific to recognize other pathogenic C. difficile strains. To overcome this issue, herein we report RFD-CD2, another RFD that is not only highly specific to C. difficile but also capable of recognizing diverse pathogenic C. difficile strains. Extensive sequence and structure characterization establishes a pseudoknot structure and a significantly minimized sequence for RFD-CD2. As a fluorescent sensor, RFD-CD2 can detect C. difficile at a concentration as low as 100 CFU/mL, thus making this DNAzyme an attractive molecular probe for rapid diagnosis of CDI caused by diverse strains of C. difficile.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , ADN Catalítico , Humanos , Clostridioides difficile/genética , Infecciones por Clostridium/diagnóstico , Prueba de Diagnóstico Rápido
5.
Angew Chem Int Ed Engl ; 62(51): e202315185, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37903738

RESUMEN

Here we report on an ultra-sensitive colorimetric sensing platform that takes advantage of both the strong amplification power of rolling circle amplification (RCA) and the high efficiency of a simple urease-mediated litmus test. The presence of a target triggers the RCA reaction, and urease-labelled DNA can hybridize to the biotinylated RCA products and be immobilized onto streptavidin-coated magnetic beads. The urease-laden beads are then used to hydrolyze urea, leading to an increase in pH that can be detected by a simple litmus test. We show this sensing platform can be easily integrated with aptamers for sensing diverse targets via the detection of human thrombin and platelet-derived growth factor (PDGF) utilizing structure-switching aptamers as well as SARS-CoV-2 in human saliva using a spike-binding trimeric DNA aptamer. Furthermore, we demonstrate that this colorimetric sensing platform can be integrated into a simple paper-based device for sensing applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Ureasa , Colorimetría , ADN/metabolismo , Técnicas de Amplificación de Ácido Nucleico
6.
Angew Chem Int Ed Engl ; 62(42): e202310941, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37648674

RESUMEN

Engineering functional nucleic acids that are active under unusual conditions will not only reveal their hidden abilities but also lay the groundwork for pursuing them for unique applications. Although many DNAzymes have been derived to catalyze diverse chemical reactions in aqueous solutions, no prior study has been set up to purposely derive DNAzymes that require an organic solvent to function. Herein, we utilized in vitro selection to isolate RNA-cleaving DNAzymes from a random-sequence DNA pool that were "compelled" to accept 35 % dimethyl sulfoxide (DMSO) as a cosolvent, via counter selection in a purely aqueous solution followed by positive selection in the same solution containing 35 % DMSO. This experiment led to the discovery of a new DNAzyme that requires 35 % DMSO for its catalytic activity and exhibits drastically reduced activity without DMSO. This DNAzyme also requires divalent metal ions for catalysis, and its activity is enhanced by monovalent ions. A minimized, more efficient DNAzyme was also derived. This work demonstrates that highly functional, organic solvent-dependent DNAzymes can be isolated from random-sequence DNA libraries via forced in vitro selection, thus expanding the capability and potential utility of catalytic DNA.


Asunto(s)
ADN Catalítico , Solventes , Dimetilsulfóxido , ADN Catalítico/genética , Iones , ARN
7.
Angew Chem Int Ed Engl ; 62(20): e202213567, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36894506

RESUMEN

Reagent-free electronic biosensors capable of analyzing disease markers directly in unprocessed body fluids will enable the development of simple & affordable devices for personalized healthcare monitoring. Here we report a powerful and versatile nucleic acid-based reagent-free electronic sensing system. The signal transduction is based on the kinetics of an electrode-tethered molecular pendulum-a rigid double stranded DNA with one of the strands displaying an analyte-binding aptamer and the other featuring a redox probe-that exhibits field-induced transport modulated by receptor occupancy. Using chronoamperometry, which enables the sensor to circumvent the conventional Debye length limitation, the binding of an analyte can be monitored as these species increase the hydrodynamic drag. The sensing platform demonstrates a low femtomolar quantification limit and minimal cross-reactivity in analyzing cardiac biomarkers in whole blood collected from patients with chronic heart failure.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Humanos , Aptámeros de Nucleótidos/química , ADN/química , Electrodos , Biomarcadores
8.
Acc Chem Res ; 54(18): 3540-3549, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34478272

RESUMEN

Pathogens have long presented a significant threat to human lives, and hence the rapid detection of infectious pathogens is vital for improving human health. Current detection methods lack the means to detect infectious pathogens in a simple, rapid, and reliable manner at the time and point of need. Functional nucleic acids (FNAs) have the potential to overcome these limitations by acting as key components for point-of-care (POC) biosensors due to their distinctive advantages that include high binding affinities and specificities, excellent chemical stability, ease of synthesis and modification, and compatibility with a variety of signal-amplification and signal-transduction mechanisms.This Account summarizes the work completed in our groups toward developing FNA-based biosensors for detecting bacteria. In vitro selection has led to the isolation of many RNA-cleaving fluorogenic DNAzymes (RFDs) and DNA aptamers that can recognize infectious pathogens, including Escherichia coli, Clostridium difficile, Helicobacter pylori, and Legionella pneumophila. In most cases, a "many-against-many" approach was employed using a DNA library against a crude cellular mixture of an infectious pathogen containing diverse biomarkers as the target to isolate RFDs, with combined counter and positive selections ensuring high specificity toward the desired target. This procedure allows for the isolation of pathogen-specific FNAs without first identifying a suitable biomarker. Multiple target-specific DNA aptamers, including anti-glutamate dehydrogenase (GDH) circular aptamers, anti-degraded toxin B aptamers, and anti-RNase HII aptamers, have also been isolated for the detection of bacteria such as Clostridium difficile. The isolated FNAs have been integrated into fluorescent, colorimetric, and electrochemical biosensors using various signal transduction mechanisms. Both simple-to-use paper-based analytical devices and hand-held electrical devices with integrated FNAs have been developed for POC applications. In addition, signal-amplification strategies, including DNA catenane enabled rolling circle amplification (RCA), DNAzyme feedback RCA, and an all-DNA amplification system using a four-way junction and catalytic hairpin assembly (CHA), have been designed and applied to these systems to further increase their detection sensitivity. The use of these FNA-based biosensors to detect pathogens directly in clinical samples, such as urine, blood, and stool, has now been demonstrated with an outstanding sensitivity of as low as 10 cells per milliliter, highlighting the tremendous potential of using FNA-based sensors in clinical applications. We further describe strategies to overcome the challenges of using FNA-based biosensors in clinical applications, including strategies to improve the stability of FNAs in biological samples and prevent their nonspecific degradation from nucleases and strategies to deal with issues such as signal loss caused by nonspecific binding and biofouling. Finally, the remaining roadblocks for employing FNA-based biosensors in clinical applications are discussed.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Bacterias/genética , Técnicas Biosensibles/métodos , ADN Catalítico/metabolismo , Aptámeros de Nucleótidos/química , Bacterias/aislamiento & purificación , ADN Catalítico/química , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto
9.
Nucleic Acids Res ; 48(19): 10680-10690, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33021630

RESUMEN

Circular DNA aptamers are powerful candidates for therapeutic applications given their dramatically enhanced biostability. Herein we report the first effort to evolve circular DNA aptamers that bind a human protein directly in serum, a complex biofluid. Targeting human thrombin, this strategy has led to the discovery of a circular aptamer, named CTBA4T-B1, that exhibits very high binding affinity (with a dissociation constant of 19 pM), excellent anticoagulation activity (with the half maximal inhibitory concentration of 90 pM) and high stability (with a half-life of 8 h) in human serum, highlighting the advantage of performing aptamer selection directly in the environment where the application is intended. CTBA4T-B1 is predicted to adopt a unique structural fold with a central two-tiered guanine quadruplex capped by two long stem-loops. This structural arrangement differs from all known thrombin binding linear DNA aptamers, demonstrating the added advantage of evolving aptamers from circular DNA libraries. The method described here permits the derivation of circular DNA aptamers directly in biological fluids and could potentially be adapted to generate other types of aptamers for therapeutic applications.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN Circular/química , Trombina/metabolismo , Aptámeros de Nucleótidos/sangre , Aptámeros de Nucleótidos/metabolismo , ADN Circular/sangre , ADN Circular/metabolismo , G-Cuádruplex , Humanos , Unión Proteica , Trombina/química
10.
Angew Chem Int Ed Engl ; 61(31): e202204252, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35567324

RESUMEN

Pen-side testing of farm animals for infectious diseases is critical for preventing transmission in herds and providing timely intervention. However, most existing pathogen tests have to be conducted in centralized labs with sample-to-result times of 2-4 days. Herein we introduce a test that uses a dual-electrode electrochemical chip (DEE-Chip) and a barcode-releasing electroactive aptamer for rapid on-farm detection of porcine epidemic diarrhea viruses (PEDv). The sensor exploits inter-electrode spacing reduction and active field mediated transport to accelerate barcode movement from electroactive aptamers to the detection electrode, thus expediting assay operation. The test yielded a clinically relevant limit-of-detection of 6 nM (0.37 µg mL-1 ) in saliva-spiked PEDv samples. Clinical evaluation of this biosensor with 12 porcine saliva samples demonstrated a diagnostic sensitivity of 83 % and specificity of 100 % with a concordance value of 92 % at an analysis time of one hour.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Código de Barras del ADN Taxonómico , Diarrea/diagnóstico , Diarrea/veterinaria , Virus de la Diarrea Epidémica Porcina/genética , Saliva , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA