Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 602(12): 2697-2715, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38743350

RESUMEN

Fetuses affected by intrauterine growth restriction have an increased risk of developing heart disease and failure in adulthood. Compared with controls, late gestation intrauterine growth-restricted (IUGR) fetal sheep have fewer binucleated cardiomyocytes, reflecting a more immature heart, which may reduce mitochondrial capacity to oxidize substrates. We hypothesized that the late gestation IUGR fetal heart has a lower capacity for mitochondrial oxidative phosphorylation. Left (LV) and right (RV) ventricles from IUGR and control (CON) fetal sheep at 90% gestation were harvested. Mitochondrial respiration (states 1-3, LeakOmy, and maximal respiration) in response to carbohydrates and lipids, citrate synthase (CS) activity, protein expression levels of mitochondrial oxidative phosphorylation complexes (CI-CV), and mRNA expression levels of mitochondrial biosynthesis regulators were measured. The carbohydrate and lipid state 3 respiration rates were lower in IUGR than CON, and CS activity was lower in IUGR LV than CON LV. However, relative CII and CV protein levels were higher in IUGR than CON; CV expression level was higher in IUGR than CON. Genes involved in lipid metabolism had lower expression in IUGR than CON. In addition, the LV and RV demonstrated distinct differences in oxygen flux and gene expression levels, which were independent from CON and IUGR status. Low mitochondrial respiration and CS activity in the IUGR heart compared with CON are consistent with delayed cardiomyocyte maturation, and CII and CV protein expression levels may be upregulated to support ATP production. These insights will provide a better understanding of fetal heart development in an adverse in utero environment. KEY POINTS: Growth-restricted fetuses have a higher risk of developing and dying from cardiovascular diseases in adulthood. Mitochondria are the main supplier of energy for the heart. As the heart matures, the substrate preference of the mitochondria switches from carbohydrates to lipids. We used a sheep model of intrauterine growth restriction to study the capacity of the mitochondria in the heart to produce energy using either carbohydrate or lipid substrates by measuring how much oxygen was consumed. Our data show that the mitochondria respiration levels in the growth-restricted fetal heart were lower than in the normally growing fetuses, and the expression levels of genes involved in lipid metabolism were also lower. Differences between the right and left ventricles that are independent of the fetal growth restriction condition were identified. These results indicate an impaired metabolic maturation of the growth-restricted fetal heart associated with a decreased capacity to oxidize lipids postnatally.


Asunto(s)
Retardo del Crecimiento Fetal , Corazón Fetal , Mitocondrias Cardíacas , Animales , Retardo del Crecimiento Fetal/metabolismo , Ovinos , Femenino , Mitocondrias Cardíacas/metabolismo , Corazón Fetal/metabolismo , Embarazo , Respiración de la Célula , Fosforilación Oxidativa , Metabolismo de los Lípidos , Citrato (si)-Sintasa/metabolismo
2.
J Nutr ; 153(2): 493-504, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36894241

RESUMEN

BACKGROUND: Leucine increases protein synthesis rates in postnatal animals and adults. Whether supplemental leucine has similar effects in the fetus has not been determined. OBJECTIVE: To determine the effect of a chronic leucine infusion on whole-body leucine oxidation and protein metabolic rates, muscle mass, and regulators of muscle protein synthesis in late gestation fetal sheep. METHODS: Catheterized fetal sheep at ∼126 d of gestation (term = 147 d) received infusions of saline (CON, n = 11) or leucine (LEU; n = 9) adjusted to increase fetal plasma leucine concentrations by 50%-100% for 9 d. Umbilical substrate net uptake rates and protein metabolic rates were determined using a 1-13C leucine tracer. Myofiber myosin heavy chain (MHC) type and area, expression of amino acid transporters, and abundance of protein synthesis regulators were measured in fetal skeletal muscle. Groups were compared using unpaired t tests. RESULTS: Plasma leucine concentrations were 75% higher in LEU fetuses compared with CON by the end of the infusion period (P < 0.0001). Umbilical blood flow and uptake rates of most amino acids, lactate, and oxygen were similar between groups. Fetal whole-body leucine oxidation was 90% higher in LEU (P < 0.0005) but protein synthesis and breakdown rates were similar. Fetal and muscle weights and myofiber areas were similar between groups, however, there were fewer MHC type IIa fibers (P < 0.05), greater mRNA expression levels of amino acid transporters (P < 0.01), and a higher abundance of signaling proteins that regulate protein synthesis (P < 0.05) in muscle from LEU fetuses. CONCLUSIONS: A direct leucine infusion for 9 d in late gestation fetal sheep does not increase protein synthesis rates but results in higher leucine oxidation rates and fewer glycolytic myofibers. Increasing leucine concentrations in the fetus stimulates its own oxidation but also increases amino acid transporter expression and primes protein synthetic pathways in skeletal muscle.


Asunto(s)
Aminoácidos , Feto , Embarazo , Ovinos , Animales , Femenino , Leucina/farmacología , Leucina/metabolismo , Aminoácidos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R228-R240, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907787

RESUMEN

Skeletal muscle from the late gestation sheep fetus with intrauterine growth restriction (IUGR) has evidence of reduced oxidative metabolism. Using a sheep model of placental insufficiency and IUGR, we tested the hypothesis that by late gestation, IUGR fetal skeletal muscle has reduced capacity for oxidative phosphorylation because of intrinsic deficits in mitochondrial respiration. We measured mitochondrial respiration in permeabilized muscle fibers from biceps femoris (BF) and soleus (SOL) from control and IUGR fetal sheep. Using muscles including BF, SOL, tibialis anterior (TA), and flexor digitorum superficialis (FDS), we measured citrate synthase (CS) activity, mitochondrial complex subunit abundance, fiber type distribution, and gene expression of regulators of mitochondrial biosynthesis. Ex vivo mitochondrial respiration was similar in control and IUGR muscle. However, CS activity was lower in IUGR BF and TA, indicating lower mitochondrial content, and protein expression of individual mitochondrial complex subunits was lower in IUGR TA and BF in a muscle-specific pattern. IUGR TA, BF, and FDS also had lower expression of type I oxidative fibers. Fiber-type shifts that support glycolytic instead of oxidative metabolism may be advantageous for the IUGR fetus in a hypoxic and nutrient-deficient environment, whereas these adaptions may be maladaptive in postnatal life.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo/fisiología , Animales , Femenino , Feto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosforilación Oxidativa , Placenta/metabolismo , Insuficiencia Placentaria/metabolismo , Embarazo , Ovinos
4.
Am J Physiol Endocrinol Metab ; 320(6): E1138-E1147, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33938236

RESUMEN

Insulin and insulin-like growth factor-1 (IGF-1) are fetal hormones critical to establishing normal fetal growth. Experimentally elevated IGF-1 concentrations during late gestation increase fetal weight but lower fetal plasma insulin concentrations. We therefore hypothesized that infusion of an IGF-1 analog for 1 wk into late gestation fetal sheep would attenuate fetal glucose-stimulated insulin secretion (GSIS) and insulin secretion in islets isolated from these fetuses. Late gestation fetal sheep received infusions with IGF-1 LR3 (IGF-1, n = 8), an analog of IGF-1 with low affinity for the IGF binding proteins and high affinity for the IGF-1 receptor, or vehicle control (CON, n = 9). Fetal GSIS was measured with a hyperglycemic clamp (IGF-1, n = 8; CON, n = 7). Fetal islets were isolated, and insulin secretion was assayed in static incubations (IGF-1, n = 8; CON, n = 7). Plasma insulin and glucose concentrations in IGF-1 fetuses were lower compared with CON (P = 0.0135 and P = 0.0012, respectively). During the GSIS study, IGF-1 fetuses had lower insulin secretion compared with CON (P = 0.0453). In vitro, glucose-stimulated insulin secretion remained lower in islets isolated from IGF-1 fetuses (P = 0.0447). In summary, IGF-1 LR3 infusion for 1 wk into fetal sheep lowers insulin concentrations and reduces fetal GSIS. Impaired insulin secretion persists in isolated fetal islets indicating an intrinsic islet defect in insulin release when exposed to IGF-1 LR3 infusion for 1 wk. We speculate this alteration in the insulin/IGF-1 axis contributes to the long-term reduction in ß-cell function in neonates born with elevated IGF-1 concentrations following pregnancies complicated by diabetes or other conditions associated with fetal overgrowth.NEW & NOTEWORTHY After a 1-wk infusion of IGF-1 LR3, late gestation fetal sheep had lower plasma insulin and glucose concentrations, reduced fetal glucose-stimulated insulin secretion, and decreased fractional insulin secretion from isolated fetal islets without differences in pancreatic insulin content.


Asunto(s)
Feto/efectos de los fármacos , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Islotes Pancreáticos/efectos de los fármacos , Animales , Diabetes Gestacional/metabolismo , Esquema de Medicación , Femenino , Enfermedades Fetales/metabolismo , Macrosomía Fetal/metabolismo , Macrosomía Fetal/patología , Feto/metabolismo , Edad Gestacional , Bombas de Infusión , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Islotes Pancreáticos/metabolismo , Enfermedades Pancreáticas/metabolismo , Embarazo , Ovinos
5.
Am J Physiol Endocrinol Metab ; 320(3): E527-E538, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33427051

RESUMEN

Insulin-like growth factor-1 (IGF-1) is an important fetal growth factor. However, the role of fetal IGF-1 in increasing placental blood flow, nutrient transfer, and nutrient availability to support fetal growth and protein accretion is not well understood. Catheterized fetuses from late gestation pregnant sheep received an intravenous infusion of LR3 IGF-1 (LR3 IGF-1; n = 8) or saline (SAL; n = 8) for 1 wk. Sheep then underwent a metabolic study to measure uterine and umbilical blood flow, nutrient uptake rates, and fetal protein kinetic rates. By the end of the infusion, fetal weights were not statistically different between groups (SAL: 3.260 ± 0.211 kg, LR3 IGF-1: 3.682 ± 0.183; P = 0.15). Fetal heart, adrenal gland, and spleen weights were higher (P < 0.05), and insulin was lower in LR3 IGF-1 (P < 0.05). Uterine and umbilical blood flow and umbilical uptake rates of glucose, lactate, and oxygen were similar between groups. Umbilical amino acid uptake rates were lower in LR3 IGF-1 (P < 0.05) as were fetal concentrations of multiple amino acids. Fetal protein kinetic rates were similar. LR3 IGF-1 skeletal muscle had higher myoblast proliferation (P < 0.05). In summary, LR3 IGF-1 infusion for 1 wk into late gestation fetal sheep increased the weight of some fetal organs. However, because umbilical amino acid uptake rates and fetal plasma amino acid concentrations were lower in the LR3 IGF-1 group, we speculate that animals treated with LR3 IGF-1 can efficiently utilize available nutrients to support organ-specific growth in the fetus rather than by stimulating placental blood flow or nutrient transfer to the fetus.NEW & NOTEWORTHY After a 1-wk infusion of LR3 IGF-1, late gestation fetal sheep had lower umbilical uptake rates of amino acids, lower fetal arterial amino acid and insulin concentrations, and lower fetal oxygen content; however, LR-3 IGF-1-treated fetuses were still able to effectively utilize the available nutrients and oxygen to support organ growth and myoblast proliferation.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Nutrientes/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Femenino , Sangre Fetal/metabolismo , Peso Fetal/efectos de los fármacos , Feto/efectos de los fármacos , Feto/metabolismo , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Placenta/efectos de los fármacos , Placentación/efectos de los fármacos , Embarazo , Ovinos
6.
FASEB J ; 34(8): 10041-10055, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573852

RESUMEN

As loss of contractile function in heart disease could often be mitigated by increased cardiomyocyte number, expansion of cardiomyocyte endowment paired with increased vascular supply is a desirable therapeutic goal. Insulin-like growth factor 1 (IGF-1) administration increases fetal cardiomyocyte proliferation and heart mass, but how fetal IGF-1 treatment affects coronary growth and function is unknown. Near-term fetal sheep underwent surgical instrumentation and were studied from 127 to 134 d gestation (term = 147 d), receiving either IGF-1 LR3 or vehicle. Coronary growth and function were interrogated using pressure-flow relationships, an episode of acute hypoxia with progressive blockade of adenosine receptors and nitric oxide synthase, and by modeling the determinants of coronary flow. The main findings were that coronary conductance was preserved on a per-gram basis following IGF-1 treatment, adenosine and nitric oxide contributed to hypoxia-mediated coronary vasodilation similarly in IGF-1-treated and Control fetuses, and the relationships between coronary flow and blood oxygen contents were similar between groups. We conclude that IGF-1-stimulated fetal myocardial growth is accompanied by appropriate expansion and function of the coronary vasculature. These findings support IGF-1 as a potential strategy to increase cardiac myocyte and coronary vascular endowment at birth.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Feto/fisiología , Factor I del Crecimiento Similar a la Insulina/farmacología , Miocitos Cardíacos/fisiología , Animales , Vasos Coronarios/citología , Vasos Coronarios/efectos de los fármacos , Femenino , Feto/efectos de los fármacos , Hipoxia/fisiopatología , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ovinos
7.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R615-R629, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483682

RESUMEN

In a sheep model of intrauterine growth restriction (IUGR) produced from placental insufficiency, late gestation fetuses had smaller skeletal muscle mass, myofiber area, and slower muscle protein accretion rates compared with normally growing fetuses. We hypothesized that IUGR fetal muscle develops adaptations that divert amino acids (AAs) from protein accretion and activate pathways that conserve substrates for other organs. We placed hindlimb arterial and venous catheters into late gestation IUGR (n = 10) and control (CON, n = 8) fetal sheep and included an external iliac artery flow probe to measure hindlimb AA uptake rates. Arterial and venous plasma samples and biceps femoris muscle were analyzed by mass spectrometry-based metabolomics. IUGR fetuses had greater abundance of metabolites enriched within the alanine, aspartate, and glutamate metabolism pathway compared with CON. Net uptake rates of branched-chain AA (BCAA) were lower by 42%-73%, and muscle ammoniagenic AAs (alanine, glycine, and glutamine) were lower by 107%-158% in IUGR hindlimbs versus CON. AA uptake rates correlated with hindlimb weight; the smallest hindlimbs showed net release of ammoniagenic AAs. Gene expression levels indicated a decrease in BCAA catabolism in IUGR muscle. Plasma purines were lower and plasma uric acid was higher in IUGR versus CON, possibly a reflection of ATP conservation. We conclude that IUGR skeletal muscle has lower BCAA uptake and develops adaptations that divert AAs away from protein accretion into alternative pathways that sustain global energy production and nitrogen disposal in the form of ammoniagenic AAs for metabolism in other organs.


Asunto(s)
Aminoácidos/metabolismo , Extremidad Inferior/fisiopatología , Músculo Esquelético/metabolismo , Insuficiencia Placentaria/tratamiento farmacológico , Alanina/metabolismo , Animales , Femenino , Retardo del Crecimiento Fetal/metabolismo , Feto/metabolismo , Miembro Posterior/metabolismo , Extremidad Inferior/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatología , Insuficiencia Placentaria/metabolismo , Embarazo , Ovinos
8.
J Physiol ; 596(23): 6063-6077, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29882596

RESUMEN

KEY POINTS: The cerebral response to fetal asphyxia is characterized by an upregulation of nucleic acid and chromatin modification processes, as well as a downregulation of metabolic processes at 1 h post-umbilical cord occlusion (UCO). Twenty-four hours post UCO, there was an upregulation of metabolic processes and protein modifications. UCO did not alter bacterial gene expression levels, nor did it produce a robust inflammatory response compared to maternal hypoxia. The administration of ketamine produced minimal effects on the fetal response to UCO in the cerebral cortex. ABSTRACT: Umbilical cord occlusion (UCO) is known to cause neurological disorders in the neonate. Previously, we have reported that hypoxic hypoxia (HH) stimulates the appearance of bacteria in the fetal brain and upregulates the expression of inflammatory markers in fetal cerebral cortex (CTX) and also that ketamine attenuates these responses. In the present study, we aimed to test the hypothesis that UCO, similar to HH, produces an inflammatory response in the fetal CTX and also that treatment with ketamine reduces these effects. In chronically instrumented fetal sheep (∼125 days), 30 min of partial UCO decreased fetal PaO2 levels by ∼50%. Half of the fetuses received ketamine (3 mg kg-1 ) 10 min prior to UCO (n = 4 per group). Fetal brains were collected 1 and 24 h after the experiment and mRNA was extracted and hybridized for microarray analyses. Differentially-expressed genes were analysed for significant association with gene ontologies and pathways. After 1 h, UCO upregulated nucleic acid processing and chromatin modification and downregulated metabolic processes compared to control. After 24 h, UCO upregulated metabolic and protein modification processes. Ketamine produced minimal effects. UCO did not alter the abundance of bacterial DNA in fetal brain, nor did it upregulate inflammation pathways compared to HH. We conclude that UCO produced time-dependent responses that did not include bacterial invasion or upregulation of inflammation pathways in fetal CTX. This contrasts with the response to HH, which resulted in the appearance of bacteria in the CTX and upregulated inflammation pathways. These responses in fetal CTX to oxygen deprivation are therefore modified by the maternal or placental response to the stimulus.


Asunto(s)
Corteza Cerebral/metabolismo , Hipoxia Fetal/genética , Feto/metabolismo , Isquemia/genética , Transcriptoma , Cordón Umbilical/irrigación sanguínea , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/microbiología , ADN Bacteriano , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Feto/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ketamina/farmacología , Embarazo , Ovinos , Transcriptoma/efectos de los fármacos
9.
J Physiol ; 594(5): 1295-310, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26497972

RESUMEN

Acute fetal hypoxia is a form of fetal stress that stimulates renal vasoconstriction and ischaemia as a consequence of the physiological redistribution of combined ventricular output. Because of the potential ischaemia-reperfusion injury to the kidney, we hypothesized that it would respond to hypoxia with an increase in the expression of inflammatory genes, and that ketamine (an N-methyl-D-aspartate receptor antagonist) would reduce or block this response. Hypoxia was induced for 30 min in chronically catheterized fetal sheep (125 ± 3 days), with or without ketamine (3 mg kg(-1)) administered intravenously to the fetus 10 min prior to hypoxia. Gene expression in fetal kidney cortex collected 24 h after the onset of hypoxia was analysed using ovine Agilent 15.5k array and validated with qPCR and immunohistochemistry in four groups of ewes: normoxic control, normoxia + ketamine, hypoxic control and hypoxia + ketamine (n = 3-4 per group). Significant differences in gene expression between groups were determined with t-statistics using the limma package for R (P ≤ 0.05). Enriched biological processes for the 427 upregulated genes were immune and inflammatory responses and for the 946 downregulated genes were metabolic processes. Ketamine countered the effects of hypoxia on upregulated immune/inflammatory responses as well as the downregulated metabolic responses. We conclude that our transcriptomics modelling predicts that hypoxia activates inflammatory pathways and reduces metabolism in the fetal kidney cortex, and ketamine blocks or ameliorates this response. The results suggest that ketamine may have therapeutic potential for protection from ischaemic renal damage.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/uso terapéutico , Hipoxia Fetal/tratamiento farmacológico , Ketamina/uso terapéutico , Riñón/fisiopatología , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Femenino , Inflamación/tratamiento farmacológico , Interleucinas/genética , Interleucinas/metabolismo , Riñón/irrigación sanguínea , Riñón/metabolismo , Embarazo , Ovinos
10.
Physiol Genomics ; 46(14): 523-32, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24824211

RESUMEN

Estradiol (E2) is a well-known modulator of fetal neuroendocrine activity and has been proposed as a critical endocrine signal readying the fetus for birth and postnatal life. To investigate the modulatory role of E2 on fetal stress responsiveness and the response of the fetal brain to asphyxic stress, we subjected chronically catheterized fetal sheep to a transient (10 min) brachiocephalic artery occlusion (BCO) or sham occlusion. Half of the fetuses received subcutaneous pellets that increased plasma E2 concentrations within the physiological range. Hypothalamic mRNA was analyzed using the Agilent 8x15k ovine array (019921), processed and annotated as previously reported by our laboratory. Analysis of the data by ANOVA revealed that E2 differentially regulated (DR) 561 genes, and BCO DR 894 genes compared with control and E2+BCO DR 1,153 genes compared with BCO alone (all P < 0.05). E2 upregulated epigenetic pathways and downregulated local steroid biosynthesis but did not significantly involve genes known to directly respond to the estrogen receptor. Brachiocephalic occlusion upregulated kinase pathways as well as genes associated with lymphocyte infiltration into the brain and downregulated neuropeptide synthesis. E2 upregulated immune- and apoptosis-related pathways after BCO and reduced kinase and epigenetic pathway responses to the BCO. Responses to BCO are different from responses to hypoxic hypoxia suggesting that mechanisms of responses to these two forms of brain hypoxia are distinct. We conclude that cerebral ischemia caused by BCO might stimulate lymphocyte infiltration into the brain and that this response appears to be modified by estradiol.


Asunto(s)
Tronco Braquiocefálico/efectos de los fármacos , Estradiol/farmacología , Feto/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Animales , Tronco Braquiocefálico/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Feto/metabolismo , Hipotálamo/metabolismo , Hipoxia/embriología , Hipoxia/genética , Linfocitos/efectos de los fármacos , Neuropéptidos/genética , Neuropéptidos/metabolismo , ARN Mensajero/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Ovinos/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
J Endocrinol ; 262(1)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727325

RESUMEN

Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.


Asunto(s)
Desarrollo Fetal , Factor I del Crecimiento Similar a la Insulina , Insulina , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Femenino , Insulina/administración & dosificación , Ovinos/embriología , Embarazo , Desarrollo Fetal/efectos de los fármacos , Glucemia/metabolismo , Feto/metabolismo , Infusiones Intravenosas , Glucosa/metabolismo , Glucosa/administración & dosificación
12.
Physiol Genomics ; 45(13): 521-7, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23653468

RESUMEN

Fetuses respond to transient hypoxia (a common stressor in utero) with cellular responses that are appropriate for promoting survival of the fetus. The present experiment was performed to identify the acute genomic responses of the fetal hypothalamus to transient hypoxia. Three fetal sheep were exposed to 30 min of hypoxia and hypothalamic mRNA extracted from samples collected 30 min after return to normoxia. These samples were compared with those from four normoxic control fetuses by the Agilent 019921 ovine array. Differentially regulated genes were analyzed by network analysis and by gene ontology analysis, identifying statistically significant overrepresentation of biological processes. Real-time PCR of selected genes supported the validity of the array data. Hypoxia induced increased expression of genes involved in response to oxygen stimulus, RNA splicing, antiapoptosis, vascular smooth muscle proliferation, and positive regulation of Notch receptor target. Downregulated genes were involved in metabolism, antigen receptor-mediated immunity, macromolecular complex assembly, S-phase, translation elongation, RNA splicing, protein transport, and posttranscriptional regulation. We conclude that these results emphasize that the cellular response to hypoxia involves reduced metabolism, the involvement of the fetal immune system, and the importance of glucocorticoid signaling.


Asunto(s)
Sistema Endocrino/metabolismo , Feto/patología , Genómica , Hipotálamo/patología , Hipoxia/genética , Sistema Inmunológico/metabolismo , Ovinos/embriología , Animales , Regulación hacia Abajo/genética , Sistema Endocrino/embriología , Sistema Endocrino/patología , Femenino , Feto/metabolismo , Feto/fisiopatología , Perfilación de la Expresión Génica , Ontología de Genes , Hipotálamo/embriología , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Hipoxia/embriología , Hipoxia/fisiopatología , Sistema Inmunológico/embriología , Sistema Inmunológico/patología , Sistema Inmunológico/fisiopatología , Masculino , Ventilación Pulmonar/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Ovinos/genética , Regulación hacia Arriba/genética
13.
Circulation ; 126(22): 2575-88, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23095280

RESUMEN

BACKGROUND: Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. METHODS AND RESULTS: We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. CONCLUSIONS: Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.


Asunto(s)
Adaptación Fisiológica/fisiología , Miosinas Cardíacas/metabolismo , Cardiomegalia/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Contracción Miocárdica/fisiología , Cadenas Ligeras de Miosina/metabolismo , Estrés Fisiológico/fisiología , Animales , Aorta/fisiopatología , Miosinas Cardíacas/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Cadenas Ligeras de Miosina/genética , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Presión Ventricular/fisiología
14.
Reprod Sci ; 29(6): 1776-1789, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34611848

RESUMEN

Pregnant sheep have been used to model complications of human pregnancies including placental insufficiency and intrauterine growth restriction. Some of the hallmarks of placental insufficiency are slower uterine and umbilical blood flow rates, impaired placental transport of oxygen and amino acids, and lower fetal arterial concentrations of anabolic growth factors. An impact of fetal sex on these outcomes has not been identified in either human or sheep pregnancies. This is likely because most studies measuring these outcomes have used small numbers of subjects or animals. We undertook a secondary analysis of previously published data generated by our laboratory in late-gestation (gestational age of 133 ± 0 days gestational age) control sheep (n = 29 male fetuses; n = 26 female fetuses; n = 3 sex not recorded) and sheep exposed to elevated ambient temperatures to cause experimental placental insufficiency (n = 23 male fetuses; n = 17 female fetuses; n = 1 sex not recorded). The primary goal was to determine how fetal sex modifies the effect of the experimental insult on outcomes related to placental blood flow, amino acid and oxygen transport, and fetal hormones. Of the 112 outcomes measured, we only found an interaction between fetal sex and experimental insult for the uterine uptake rates of isoleucine, phenylalanine, and arginine. Additionally, most outcomes measured did not show a difference based on fetal sex when adjusting for the impact of placental insufficiency. Exceptions included fetal norepinephrine and cortisol concentrations, which were higher in female compared to male fetuses. For the parameters measured in the current analysis, the impact of fetal sex was not widespread.


Asunto(s)
Insuficiencia Placentaria , Aminoácidos/metabolismo , Aminoácidos/farmacología , Animales , Femenino , Retardo del Crecimiento Fetal/metabolismo , Feto/metabolismo , Humanos , Masculino , Oxígeno , Placenta/metabolismo , Circulación Placentaria , Insuficiencia Placentaria/metabolismo , Embarazo , Ovinos
15.
Circulation ; 122(1): 20-32, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20566951

RESUMEN

BACKGROUND: Disruption of the balance between matrix metalloproteinases (MMP) and MMP inhibitors (TIMPs) within a myocardial infarct (MI) contributes to left ventricular wall thinning and changes in regional stiffness at the MI region. This study tested the hypothesis that a targeted regional approach through localized high-frequency stimulation (LHFS) using low-amplitude electric pulses instituted within a formed MI scar would alter MMP/TIMP levels and prevent MI thinning. METHODS AND RESULTS: At 3 weeks after MI, pigs were randomized for LHFS (n=7; 240 bpm, 0.8 V, 0.05-ms pulses) or were left unstimulated (UNSTIM; n=10). At 4 weeks after MI, left ventricular wall thickness (echocardiography; 0.89+/-0.07 versus 0.67+/-0.08 cm; P<0.05) and regional stiffness (piezoelectric crystals; 14.70+/-2.08 versus 9.11+/-1.24; P<0.05) were higher with LHFS than in UNSTIM. In vivo interstitial MMP activity (fluorescent substrate cleavage; 943+/-59 versus 1210+/-72 U; P<0.05) in the MI region was lower with LHFS than in UNSTIM. In the MI region, MMP-2 levels were lower and TIMP-1 and collagen levels were higher with LHFS than in UNSTIM (all P<0.05). Transforming growth factor-beta receptor 1 and phosphorylated SMAD-2/3 levels within the MI region were higher with LHFS than in UNSTIM. Electric stimulation (4 Hz) of isolated fibroblasts resulted in reduced MMP-2 and MT1-MMP levels but increased TIMP-1 levels compared with unstimulated fibroblasts. CONCLUSIONS: These unique findings demonstrate that LHFS of the MI region altered left ventricular wall thickness and material properties, likely as a result of reduced regional MMP activity. Thus, LHFS may provide a novel means to favorably modify left ventricular remodeling after MI.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Metaloproteinasas de la Matriz/metabolismo , Infarto del Miocardio/terapia , Función Ventricular Izquierda/fisiología , Remodelación Ventricular/fisiología , Animales , Diástole , Ecocardiografía , Terapia por Estimulación Eléctrica/efectos adversos , Fibroblastos/fisiología , Frecuencia Cardíaca , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Infarto del Miocardio/enzimología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/cirugía , Marcapaso Artificial/veterinaria , Reproducibilidad de los Resultados , Volumen Sistólico , Porcinos , Sístole , Taquicardia Ventricular/etiología , Toracotomía , Factor de Crecimiento Transformador beta/fisiología
16.
Front Endocrinol (Lausanne) ; 12: 785242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917036

RESUMEN

Intrauterine growth restricted (IUGR) fetuses are born with lower skeletal muscle mass, fewer proliferating myoblasts, and fewer myofibers compared to normally growing fetuses. Plasma concentrations of insulin, a myogenic growth factor, are lower in IUGR fetuses. We hypothesized that a two-week insulin infusion at 75% gestation would increase myoblast proliferation and fiber number in IUGR fetal sheep. Catheterized control fetuses received saline (CON-S, n=6), and the IUGR fetuses received either saline (IUGR-S, n=7) or insulin (IUGR-I, 0.014 ± 0.001 units/kg/hr, n=11) for 14 days. Fetal arterial blood gases and plasma amino acid levels were measured. Fetal skeletal muscles (biceps femoris, BF; and flexor digitorum superficialis, FDS) and pancreases were collected at necropsy (126 ± 2 dGA) for immunochemistry analysis, real-time qPCR, or flow cytometry. Insulin concentrations in IUGR-I and IUGR-S were lower vs. CON-S (P ≤ 0.05, group). Fetal arterial PaO2, O2 content, and glucose concentrations were lower in IUGR-I vs. CON-S (P ≤ 0.01) throughout the infusion period. IGF-1 concentrations tended to be higher in IUGR-I vs. IUGR-S (P=0.06), but both were lower vs. CON-S (P ≤ 0.0001, group). More myoblasts were in S/G2 cell cycle stage in IUGR-I vs. both IUGR-S and CON-S (145% and 113%, respectively, P ≤ 0.01). IUGR-I FDS muscle weighed 40% less and had 40% lower fiber number vs. CON-S (P ≤ 0.05) but were not different from IUGR-S. Myonuclear number per fiber and the mRNA expression levels of muscle regulatory factors were not different between groups. While the pancreatic ß-cell mass was lower in both IUGR-I and IUGR-S compared to CON-S, the IUGR groups were not different from each other indicating that feedback inhibition by endogenous insulin did not reduce ß-cell mass. A two-week insulin infusion at 75% gestation promoted myoblast proliferation in the IUGR fetus but did not increase fiber or myonuclear number. Myoblasts in the IUGR fetus retain the capacity to proliferate in response to mitogenic stimuli, but intrinsic defects in the fetal myoblast by 75% gestation may limit the capacity to restore fiber number.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Esquema de Medicación , Femenino , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/patología , Infusiones Intravenosas , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/patología , Mioblastos Esqueléticos/fisiología , Embarazo , Ovinos
17.
Am J Physiol Heart Circ Physiol ; 299(1): H217-24, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20472759

RESUMEN

Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30-35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 +/- 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 +/- 0.4%), but MMP activity remained elevated (121 +/- 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling.


Asunto(s)
Arritmias Cardíacas/enzimología , Sistema de Conducción Cardíaco/fisiopatología , Metaloproteinasas de la Matriz/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Presión Sanguínea , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Electrocardiografía , Activación Enzimática , Frecuencia Cardíaca , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/fisiopatología , Recuperación de la Función , Porcinos , Factores de Tiempo , Regulación hacia Arriba , Presión Ventricular
18.
J Endocrinol ; 244(2): 339-352, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31751294

RESUMEN

Intrauterine growth-restricted (IUGR) fetuses are born with reduced skeletal muscle mass. We hypothesized that reduced rates of myogenesis would contribute to fewer and smaller myofibers in IUGR fetal hindlimb muscle compared to the normally growing fetus. We tested this hypothesis in IUGR fetal sheep with progressive placental insufficiency produced by exposing pregnant ewes to elevated ambient temperatures from 38 to 116 days gestation (dGA; term = 147 dGA). Surgically catheterized control (CON, n = 8) and IUGR (n = 13) fetal sheep were injected with intravenous 5-bromo-2'-deoxyuridine (BrdU) prior to muscle collection (134 dGA). Rates of myogenesis, defined as the combined processes of myoblast proliferation, differentiation, and fusion into myofibers, were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. Total myofiber number was determined for the entire cross-section of the FDS muscle. In IUGR fetuses, the number of BrdU+ myonuclei per myofiber cross-section was lower in BF, TA, and FDS (P < 0.05), total myonuclear number per myofiber cross-section was lower in BF and FDS (P < 0.05), and total myofiber number was lower in FDS (P < 0.005) compared to CON. mRNA expression levels of cyclins, cyclin-dependent protein kinases, and myogenic regulatory factors were lower (P < 0.05), and inhibitors of the cell cycle were higher (P < 0.05) in IUGR BF compared to CON. Markers of apoptosis were not different in IUGR BF muscle. These results show that in IUGR fetuses, reduced rates of myogenesis produce fewer numbers of myonuclei, which may limit hypertrophic myofiber growth. Fewer myofibers of smaller size contribute to smaller muscle mass in the IUGR fetus.


Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Feto/embriología , Desarrollo de Músculos , Músculo Esquelético/embriología , Insuficiencia Placentaria/fisiopatología , Animales , Apoptosis , Bromodesoxiuridina , Femenino , Insulina/metabolismo , Embarazo , Preñez , Ovinos , Temperatura
19.
Physiol Rep ; 6(17): e13840, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30175552

RESUMEN

Fetal insulin is critical for regulation of growth. Insulin concentrations are partly determined by the amount of ß-cells present and their insulin content. Insulin-like growth factor-1 (IGF-1) is a fetal anabolic growth factor which also impacts ß-cell mass in models of ß-cell injury and diabetes. The extent to which circulating concentrations of IGF-1 impact fetal ß-cell mass and pancreatic insulin content is unknown. We hypothesized that an infusion of an IGF-1 analog for 1 week into the late gestation fetal sheep circulation would increase ß-cell mass, pancreatic islet size, and pancreatic insulin content. After the 1-week infusion, pancreatic insulin concentrations were 80% higher than control fetuses (P < 0.05), but there were no differences in ß-cell area, ß-cell mass, or pancreatic vascularity. However, pancreatic islet vascularity was 15% higher in IGF-1 fetuses and pancreatic VEGFA, HGF, IGF1, and IGF2 mRNA expressions were 70-90% higher in IGF-1 fetuses compared to control fetuses (P < 0.05). Plasma oxygen, glucose, and insulin concentrations were 25%, 22%, and 84% lower in IGF-1 fetuses, respectively (P < 0.05). The previously described role for IGF-1 as a ß-cell growth factor may be more relevant for local paracrine signaling in the pancreas compared to circulating endocrine signaling.


Asunto(s)
Sangre Fetal/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Insulina/sangre , Islotes Pancreáticos/metabolismo , Animales , Arterias/metabolismo , Glucemia/análisis , Femenino , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Factor II del Crecimiento Similar a la Insulina/metabolismo , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/embriología , Masculino , Oxígeno/sangre , Ovinos
20.
Front Physiol ; 9: 1858, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30666211

RESUMEN

The physiological response to hypoxia in the fetus has been extensively studied with regard to redistribution of fetal combined ventricular output and sparing of oxygen delivery to fetal brain and heart. Previously, we have shown that the fetal brain is capable of mounting changes in gene expression that are consistent with tissue inflammation. The present study was designed to use transcriptomics and systems biology modeling to test the hypothesis that ketamine reduces or prevents the upregulation of inflammation-related pathways in hypothalamus and hippocampus after transient hypoxic hypoxia. Chronically catheterized fetal sheep (122 ± 5 days gestation) were subjected to 30 min hypoxia (relative reduction in PaO2∼50%) caused by infusion of nitrogen into the inspired gas of the pregnant ewe. RNA was isolated from fetal hypothalamus and hippocampus collected 24 h after hypoxia, and was analyzed for gene expression using the Agilent 15.5 k ovine microarray. Ketamine, injected 10 min prior to hypoxia, reduced the cerebral immune response activation to the hypoxia in both brain regions. Genes both upregulated by hypoxia and downregulated by ketamine after hypoxia were significantly associated with gene ontology terms and KEGG pathways that are, themselves, associated with the tissue response to exposure to bacteria. We conclude that the results are consistent with interruption of the cellular response to bacteria by ketamine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA