Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hepatology ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900411

RESUMEN

BACKGROUND AND AIMS: Surgical resection serves as the principal curative strategy for HCC, yet the incidence of postoperative recurrence remains alarmingly high. However, the spatial molecular structural alterations contributing to postoperative recurrence in HCC are still poorly understood. APPROACH AND RESULTS: We employed imaging mass cytometry to profile the in situ expression of 33 proteins within 358,729 single cells of 92 clinically annotated surgical specimens from 46 patients who were treated with surgical resections for primary and relapsed tumors. We revealed the recurrence progression of HCC was governed by the dynamic spatial distribution and functional interplay of diverse cell types across adjacent normal, tumor margin, and intratumor regions. Our exhaustive analyses revealed an aggressive, immunosuppression-related spatial ecosystem in relapsed HCC. Additionally, we illustrated the prominent implications of the tumor microenvironment of tumor margins in association with relapse HCC. Moreover, we identified a novel subpopulation of dendritic cells (PDL1 + CD103 + DCs) enriched in the peritumoral area that correlated with early postoperative recurrence, which was further validated in an external cohort. Through the analysis of single-cell RNA sequencing data, we found the interaction of PDL1 + CD103 + DCs with regulatory T cells and exhausted T cells enhanced immunosuppression and immune escape through multiple ligand-receptor pathways. CONCLUSIONS: We comprehensively depicted the spatial landscape of single-cell dynamics and multicellular architecture within primary and relapsed HCC. Our findings highlight spatial organization as a prominent determinant of HCC recurrence and provide valuable insight into the immune evasion mechanisms driving recurrence.

2.
Cancer Cell Int ; 24(1): 2, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167017

RESUMEN

BACKGROUND: Disulfidptosis is a recently proposed novel cell death mode in which cells with high SLC7A11 expression induce disulfide stress and cell death in response to glucose deficiency. The purpose of the research was to explore the function of disufidptosis and disulfide metabolism in the progression of lung adenocarcinoma (LUAD). METHODS: The RNA-seq data from TCGA were divided into high/low expression group on the base of the median expression of SLC7A11, and the characteristic of differentially expressed disulfide metabolism-related genes. Least absolute shrinkage and selection operator (LASSO) algorithm was conducted the disulfidptosis and disulfide metabolism risk index. The tumor mutation burden (TMB), mechanism, pathways, tumor microenvironment (TME), and immunotherapy response were assessed between different risk groups. The role of TXNRD1 in LUAD was investigated by cytological experiments. RESULTS: We established the risk index containing 5 genes. There are significant differences between different risk groups in terms of prognosis, TMB and tumor microenvironment. Additionally, the low-risk group demonstrated a higher rate of response immunotherapy in the prediction of immunotherapy response. Experimental validation suggested that the knockdown of TXNRD1 suppressed cell proliferation, migration, and invasion of LUAD. CONCLUSION: Our research highlights the enormous potential of disulfidptosis and disulfide metabolism risk index in predicting the prognosis of LUAD. And TXNRD1 has great clinical translational ability.

3.
Am J Cancer Res ; 14(6): 2823-2838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005693

RESUMEN

Tissue transglutaminase (TGM2) is a member of the glutamine transferase superfamily, located within cells and their membranes. When secreted, it catalyzes the cross-linking of extracellular matrix proteins and promotes the formation of extracellular matrix scaffolds. To determine the function of TGM2 in the tumorigenesis of lung squamous cell carcinoma (LUSC), we conducted a comprehensive bioinformatics analysis of TGM2. Our findings indicate that high expression of TGM2 in LUSC was associated with a poorer prognosis. Additionally, we found that high expression of TGM2 is closely related to tumor-promoting inflammation and may increase sensitivity to immunotherapy. We further confirmed the cancer-promoting effect of TGM2 in LUSC through in vitro overexpression and knockdown experiments and showed that TGM2 primarily affects cancer cell proliferation, apoptosis, and invasion. In summary, TGM2 promoted the progression of LUSC, and targeting TGM2 is expected to become a new therapeutic approach for LUSC treatment.

4.
Front Immunol ; 14: 1147528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033934

RESUMEN

Background: Zinc is a key mineral element in regulating cell growth, development, and immune system. We constructed the zinc metabolism-related gene signature to predict prognosis and immunotherapy response for lung adenocarcinoma (LUAD). Methods: Zinc metabolism-associated gene sets were obtained from Molecular Signature Database. Then, the zinc metabolism-related gene signature (ZMRGS) was constructed and validated. After combining with clinical characteristics, the nomogram for practical application was constructed. The differences in biological pathways, immune molecules, and tumor microenvironment (TME) between the different groups were analyzed. Tumor Immune Dysfunction and Exclusion algorithm (TIDE) and two immunotherapy datasets were used to evaluate the immunotherapy response. Results: The signature was constructed according to six key zinc metabolism-related genes, which can well predict the prognosis of LUAD patients. The nomogram also showed excellent prediction performance. Functional analysis showed that the low-risk group was in the status of immune activation. More importantly, the lower risk score of LUAD patients showed a higher response rate to immunotherapy. Conclusion: The state of zinc metabolism is closely connected to prognosis, tumor microenvironment, and response to immunotherapy. The zinc metabolism-related signature can well evaluate the prognosis and immunotherapy response for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Zinc , Inmunoterapia , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral/genética
5.
Front Biosci (Landmark Ed) ; 28(9): 219, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37796679

RESUMEN

The occurrence and development of esophageal cancer involve multiple genetic abnormalities that contribute to the malignant transformation of esophageal epithelial cells, followed by invasion and metastasis, leading to a poor outcome. Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal malignancy in East Asia, with approximately half of newly diagnosed ESCC cases occurring in China. The TP53 tumor suppressor gene mutation is one of the most common mutations in ESCC. TP53 mutations are observed even in the early phases of esophageal carcinogenesis. Normal functions of the p53 network are lost in cells of ESCC patients who harbor the mutant TP53 gene, inducing tumor development, radiation resistance, chemotherapy resistance, and immune suppression, promoting progression and metastasis, thereby resulting in an overall poor prognosis. Although clinical trials of several pharmacological compounds targeting mutational TP53 have been explored, novel approaches are still urgently required to improve the observed dismal survival. A better understanding of the role of the mutant TP53 gene in human ESCC might lead to the discovery of innovative targeted therapies to treat this malignancy.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Proteína p53 Supresora de Tumor/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Mutación , China
6.
Front Immunol ; 14: 1171145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081889

RESUMEN

Background: As the main executor of immunotherapy, T cells significantly affect the efficacy of immunotherapy. However, the contribution of the T cell proliferation regulator to the prognosis of lung adenocarcinoma (LUAD) and immunotherapy is still unclear. Methods: Based on T cell proliferation regulators, LUAD samples from The Cancer Genome Atlas (TCGA) were divided into two different clusters by consensus clustering. Subsequently, the T cell proliferation regulator (TPR) signature was constructed according to the prognostic T cell proliferation regulators. Combined with clinical information, a nomogram for clinical practice was constructed. The predictive ability of the signature was verified by the additional Gene Expression Omnibus (GEO) dataset. We also analyzed the differences of tumor microenvironment (TME) in different subgroups and predicted the response to immunotherapy according to the TIDE algorithm. Finally, we further explored the role of ADA (Adenosine deaminase) in the lung adenocarcinoma cell lines through the knockdown of ADA. Results: According to the consensus clustering, there were differences in survival and tumor microenvironment between two different molecular subtypes. T cell proliferation regulator-related signature could accurately predict the prognosis of LUAD. The low-risk group had a higher level of immune infiltration and more abundant immune-related pathways, and its response to immunotherapy was significantly better than the high-risk group (Chi-square test, p<0.0001). The knockdown of ADA inhibited proliferation, migration, and invasion in lung adenocarcinoma cell lines. Conclusion: T cell proliferation regulators were closely related to the prognosis and tumor microenvironment of LUAD patients. And the signature could well predict the prognosis of LUAD patients and their response to immunotherapy. ADA may become a new target for the treatment of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Inmunoterapia , Proliferación Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral
7.
Front Biosci (Landmark Ed) ; 28(10): 243, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37919070

RESUMEN

PURPOSE: Current evidence suggests that phosphoserine aminotransferase 1 (PSAT1) is overexpressed in various tumors. Herein, we investigate the significance of PSAT1 in non-small cell lung cancer (NSCLC) and its correlation with immune infiltration. METHODS: The expression profile of PSAT1 in NSCLC patients and related clinical information was obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA-NSCLC) databases. In silico and experimental validation were conducted to assess the role of PSAT1 in NSCLC. Gene set enrichment analysis (GSEA) was performed to investigate the disparities in biological functions between groups with high and low PSAT1 expression. Additionally, the biological characteristics and immune cell infiltration were compared between these two groups. We also assessed whether PSAT1 expression could predict the sensitivity of NSCLC patients to immunotherapy using the immunophenotype score (IPS) and an anti-PD-L1 immunotherapy cohort (IMvig-or210). Furthermore, the difference in drug sensitivity between PSAT1-high and PSAT1-low expression cell lines was investigated. RESULTS: Analysis of transcriptional expression profiles using TCGA data revealed overexpression of PSAT1 in NSCLC tissues correlated with poor overall survival (OS). GSEA results showed enrichment of DNA recombination and repair, nucleotide biosynthesis, and the P53 signaling pathway in the PSAT1-high group. Experimental validation demonstrated that the knockdown of PSAT1 suppressed cell proliferation, migration, and invasion of NSCLC. Immune cell infiltration analysis revealed an immune-activated tumor microenvironment in the PSAT1-low group. It was also observed that PSAT1-low cell lines were more likely to benefit from immunotherapy and several chemotherapy drugs. CONCLUSIONS: PSAT1 has enormous potential for applications in the prediction of NSCLC patient outcomes and provides the foothold for more precise individualized treatment of this patient population.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular , Proliferación Celular/genética , Inmunoterapia , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
8.
EClinicalMedicine ; 57: 101839, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36816343

RESUMEN

Background: This phase 2 trial aimed to compare adjuvant icotinib with observation in patients with epidermal growth factor receptor (EGFR) mutation-positive resected stage IB non-small cell lung cancer (NSCLC). Methods: We performed a randomised, open-label, phase 2 trial from May 1, 2015 to December 29, 2020 at Sun Yat-sen University Cancer Center in China. Patients with completely resected, EGFR-mutant, stage IB (the 7th edition of TNM staging) NSCLC without adjuvant chemotherapy were randomised (1:1) to receive adjuvant therapy with icotinib (125 mg, three times daily) for 12 months or to undergo observation until disease progression or intolerable toxicity occurred. The primary endpoint was 3-year disease-free survival (DFS). CORIN (GASTO1003) was registered with Clinicaltrials.gov, with the number NCT02264210. Findings: A total of 128 patients were randomised, with 63 patients in the icotinib group and 65 patients in the observation group. The median duration of follow-up was 39.9 months. The three-year DFS was significantly higher in the icotinib group (96.1%, 95% confidence interval [CI], 91.3-99.9) than in the observation group (84.0%, 95% CI, 75.1-92.9; P = 0.041). The DFS was significantly longer in the icotinib group than in the observation group, with a hazard ratio (HR) of 0.23 (95% CI, 0.07-0.81; P = 0.013). The OS data were immature, with three deaths in the observation arm. In the icotinib group, adverse events (AEs) of any grade were reported in 49 patients (77.8%), and grade 3 or greater AEs occurred in four patients (6.3%). No treatment-related deaths occurred. Interpretation: Our findings suggested that adjuvant icotinib improved the 3-year DFS in patients with completely resected EGFR-mutated stage IB NSCLC with a manageable safety profile. Funding: This study was sponsored by Betta Pharmaceutical Co., Ltd.

9.
Clin Transl Med ; 13(6): e1303, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37313656

RESUMEN

BACKGROUND: Bladder cancer (BLCA) is one of the most diagnosed cancers in humans worldwide. Recently, immunotherapy has become a main treatment option for BC. However, most BLCA patients do not respond to immune checkpoint inhibitors or relapse after immunotherapy. Therefore, it is very important to identify novel biomarkers for the prediction of immunotherapy response in B patients. METHODS: Pancancer single-cell RNA sequencing (scRNA-seq) data were used to identify the clusters of CD4+ T cells in the tumour microenvironment (TME). The clinical significance of key CD4+ T-cell clusters was evaluated based on the survival data of two independent immunotherapy bladder cancer (BLCA) cohorts. We also investigated the function of key clusters of CD4+ T cell in the TME of BC cells in vitro. RESULTS: This study identified two novel exhausted CD4+ T-cell subpopulations with the expression of PD1hi CD200hi or PD1hi CD200low in BC patients. Moreover, BLCA patients with a high level of PD1hi CD200hi CD4+ exhausted T cell showed immunotherapy resistance. Cell function analysis demonstrated that PD1hi CD200hi CD4+ exhausted T cell can promote epithelial-mesenchymal transition (EMT) and angiogenesis in BLCA cells. In addition, PD1hi CD200hi CD4+ exhausted T cells were shown to communicate with malignant BLCA cells through the GAS6-AXL axis. Finally, we also found that GAS6 expression is upregulated in B cells by METTL3-mediated m6A modification. CONCLUSIONS: PD1hi CD200hi CD4+ exhausted T cell may serve as a novel biomarker for poor prognosis and immunotherapy resistance in B. Targeted inhibitors of PD1hi CD200hi CD4+ exhausted T cells may help improve the efficacy of immunotherapy.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T , Recurrencia Local de Neoplasia , Neoplasias de la Vejiga Urinaria/terapia , Linfocitos T CD4-Positivos , Microambiente Tumoral , Metiltransferasas
10.
Genes (Basel) ; 13(11)2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36421841

RESUMEN

Background: Up frameshift protein 1 (UPF1) is a key component of nonsense-mediated mRNA decay (NMD) of mRNA containing premature termination codons (PTCs). The dysregulation of UPF1 has been reported in various cancers. However, the expression profile of UPF1 and its clinical significance in clear cell renal cell carcinoma (ccRCC) remains unclear. Methods: In order to detect UPF1 expression in ccRCC and its relationship with the clinical features of ccRCC, bulk RNA sequencing data were analyzed from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and ArrayExpress databases. The impact of UPF1 on the immune microenvironment of ccRCC was evaluated by multiple immune scoring algorithms to identify the cell groups that typically express UPF1 using ccRCC single cell sequencing (scRNA) data. In addition, genes co-expressed with UPF1 were identified by the weighted gene correlation network analysis (WGCNA), followed by KEGG and Reactome enrichment analysis. A series of functional experiments were performed to assess the roles of UPF1 in renal cancer cells. Finally, pan-cancer analysis of UPF1 was also performed. Results: Compared with normal tissues, the expression levels of UPF1 mRNA and protein in tumor tissues of ccRCC patients decreased significantly. In addition, patients with low expression of UPF1 had a worse prognosis. Analysis of the immune microenvironment indicated that UPF1 immune cell infiltration was closely related and the ccRCC scRNA-seq data identified that UPF1 was mainly expressed in macrophages. WGCNA analysis suggested that the functions of co-expressed genes are mainly enriched in cell proliferation and cellular processes. Experimental tests showed that knockdown of UPF1 can promote the invasion, migration and proliferation of ccRCC cells. Lastly, pan-cancer analysis revealed that UPF1 disorders were closely associated with various cancer outcomes. Conclusions: UPF1 may play a tumor suppressive role in ccRCC and modulate the immune microenvironment. The loss of UPF1 can predict the prognosis of ccRCC, making it a promising biomarker and providing a new reference for prevention and treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Pronóstico , ARN Helicasas/genética , ARN Helicasas/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Microambiente Tumoral/genética , Transactivadores/genética , Transactivadores/metabolismo
11.
Front Immunol ; 13: 1040668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524120

RESUMEN

Purpose: The dysregulation of copper metabolism is closely related to the occurrence and progression of cancer. This study aims to investigate the prognostic value of copper metabolism-related genes (CMRGs) in lung adenocarcinoma (LUAD) and its characterization in the tumor microenvironment (TME). Methods: The differentially expressed CMRGs were identified in The Cancer Genome Atlas (TCGA) of LUAD. The least absolute shrinkage and selection operator regression (LASSO) and multivariate Cox regression analysis were used to establish the copper metabolism-related gene signature (CMRGs), which was also validated in Gene Expression Omnibus (GEO) database (GSE72094). The expression of key genes was verified by quantitative real-time PCR (qRT-PCR). Then, the CMRGS was used to develop a nomogram to predict the 1-year, 3-year, and 5-year overall survival (OS). In addition, differences in tumor mutation burden (TMB), biological characteristics and immune cell infiltration between high-risk and low-risk groups were systematically analyzed. Immunophenoscore (IPS) and an anti-PD-L1 immunotherapy cohort (IMvigor210) were used to verify whether CMRGS can predict the response to immunotherapy in LUAD. Results: 34 differentially expressed CMRGs were identified in the TCGA dataset, 11 of which were associated with OS. The CMRGS composed of 3 key genes (LOXL2, SLC31A2 and SOD3) had showed good clinical value and stratification ability in the prognostic assessment of LUAD patients. The results of qRT-PCR confirmed the expression of key CMRGs in LUAD and normal tissues. Then, all LUAD patients were divided into low-risk and high-risk groups based on median risk score. Those in the low-risk group had a significantly longer OS than those in the high-risk group (P<0.0001). The area under curve (AUC) values of the nomogram at 1, 3, and 5 years were 0.734, 0.735, and 0.720, respectively. Calibration curves comparing predicted and actual OS were close to ideal model, indicating a good consistency between prediction and actual observation. Functional enrichment analysis showed that the low-risk group was enriched in a large number of immune pathways. The results of immune infiltration analysis also confirmed that there were a variety of immune cell infiltration in the low-risk group. In addition, multiple immune checkpoints were highly expressed in the low-risk group and may benefit better from immunotherapy. Conclusion: CMRGS is a promising biomarker to assess the prognosis of LUAD patients and may be serve as a guidance on immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Cobre , Adenocarcinoma del Pulmón/genética , Inmunoterapia , Factores de Riesgo , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
12.
Genes (Basel) ; 13(12)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36553562

RESUMEN

Dysregulation of amino acid metabolism (AAM) is an important factor in cancer progression. This study intended to study the prognostic value of AAM-related genes in lung adenocarcinoma (LUAD). Methods: The mRNA expression profiles of LUAD datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were applied as the training and validation sets. After identifying the differentially expressed AAM-related genes, an AAM-related gene signature (AAMRGS) was constructed and validated. Additionally, we systematically analyzed the differences in immune cell infiltration, biological pathways, immunotherapy response, and drug sensitivity between the two AAMRGS subgroups. Results: The prognosis-related signature was constructed on the grounds of key AAM-related genes. LUAD patients were divided into AAMRGS-high and -low groups. Patients in the two subgroups differed in prognosis, tumor microenvironment (TME), biological pathways, and sensitivity to chemotherapy and immunotherapy. The area under the receiver operating characteristics (ROC) and calibration curves showed good predictive ability for the nomogram. Analysis of immune cell infiltration revealed that the TME of the AAMRGS-low group was in a state of immune activation. Conclusion: We constructed an AAMRGS that could effectively predict prognosis and guide treatment strategies for patients with LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Pronóstico , Nomogramas , Neoplasias Pulmonares/genética , Aminoácidos/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA