Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105455, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949232

RESUMEN

The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana , Proteínas Proto-Oncogénicas c-akt , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Humanos , Proliferación Celular , Guanosina Trifosfato/metabolismo , Inmunoprecipitación , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(2): 566-574, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30587587

RESUMEN

We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.


Asunto(s)
Adenosina Trifosfato , Metabolismo Energético/genética , Homocigoto , Dinámicas Mitocondriales/genética , Nucleósido Difosfato Quinasas NM23 , Enfermedades Neurodegenerativas , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Línea Celular , Supervivencia Celular , Femenino , Humanos , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología
3.
Anal Chem ; 93(42): 14247-14255, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34633808

RESUMEN

Measurement of four dNTP pools is important for investigating metabolism, genome stability, and drug action. In this report, we developed a two-step method for quantitating dNTPs by the combination of rolling circle amplification (RCA) and quantitative polymerase chain reaction (qPCR). We used CircLigase to generate a single-strand DNA in circular monomeric configuration, which was then used for the first step of RCA reaction that contained three dNTPs in excess for quantification of one dNTP at limiting levels. The second step is the amplification of RCA products by qPCR, in which one primer was designed to be completely annealed with the polymeric ssDNA product but not the monomeric template DNA. Using 1 amol of the template in the assay, each dNTP from 0.02 to 2.5 pmol gave a linearity with r2 > 0.99, and the quantification was not affected by the presence of rNTPs. We further found that the preparation of biological samples for the RCA reaction required methanol and chloroform extraction. The method was so sensitive that 1 × 104 cells were sufficient for dNTP quantification with the results similar to those determined by a radio-isotope method using 2 × 105 cells. Thus, the RCA/qPCR method is convenient, cost-effective, and highly sensitive for dNTP quantification.


Asunto(s)
ADN , Polifosfatos , Bioensayo , ADN/genética , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa
4.
J Biol Chem ; 294(27): 10686-10697, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31152062

RESUMEN

The yeast Candida albicans is the most prevalent opportunistic fungal pathogen in humans. Drug resistance among C. albicans isolates poses a common challenge, and overcoming this resistance represents an unmet need in managing this common pathogen. Here, we investigated CDC8, encoding thymidylate kinase (TMPK), as a potential drug target for the management of C. albicans infections. We found that the region spanning amino acids 106-123, namely the Ca-loop of C. albicans TMPK (CaTMPK), contributes to the hyperactivity of this enzyme compared with the human enzyme (hTMPK) and to the utilization of deoxyuridine monophosphate (dUMP)/deoxy-5-fluorouridine monophosphate (5-FdUMP) as a substrate. Notably, expression of CaTMPK, but not of hTMPK, produced dUTP/5-FdUTP-mediated DNA toxicity in budding yeast (Saccharomyces cerevisiae). CRISPR-mediated deletion of this Ca-loop in C. albicans revealed that the Ca-loop is critical for fungal growth and susceptibility to 5-fluorouridine (5-FUrd). Of note, pathogenic and drug-resistant C. albicans clones were similarly sensitive to 5-FUrd, and we also found that CaTMPK is essential for the growth of C. albicans In conclusion, these findings not only identified a target site for the development of CaTMPK-selective drugs, but also revealed that 5-FUrd may have potential utility as drug for managing C. albicans infections.


Asunto(s)
Candida albicans/enzimología , Proteínas Fúngicas/química , Nucleósido-Fosfato Quinasa/química , Pirimidinas/farmacología , Secuencia de Aminoácidos , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edición Génica , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Uridina/análogos & derivados , Uridina/farmacología , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
6.
FASEB J ; 33(2): 2017-2025, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30199284

RESUMEN

Cellular supply of deoxythymidine triphosphate (dTTP) is crucial for DNA replication and repair. Thymidylate kinase (TMPK) catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, which is an essential step for dTTP synthesis. Despite their major cellular localization in cytosol, TMPK and ribonucleotide reductase (RNR) are detected at DNA damage sites for local dNDP formation. Because deoxyuridine diphosphate is synthesized by RNR, the simultaneous recruitment of TMPK and RNR to DNA damage sites is critical for preventing deoxyuridine triphosphate-mediated toxic repair. This study investigates the mechanism responsible for the recruitment of TMPK to DNA damage sites. Our data demonstrate the requirement of ataxia telangiectasia mutated (ATM) kinase activity for TMPK recruitment to DNA lesion sites. Moreover, we find that TMPK is able to form the complex with histone acetyltransferase Tip60 and RNR. Inhibition of ATM kinase reduces the complex formation and TMPK phosphorylation. Our analysis further shows the presence of TMPK phosphorylation at serine 88, which is an ATM kinase consensus site. A phosphorylation-defective mutation at this site suppresses TMPK recruitment to DNA damage sites and the complex formation with Tip60. Finally, we provide evidence that this site is critical for the function of TMPK in DNA repair but not for catalytic activity. Together, these findings suggest that Tip60-ATM signaling has a functional contribution to the recruitment of TMPK to DNA damage sites, thereby increasing local dTTP synthesis for DNA repair.-Hu, C.-M., Tsao, N., Wang, Y.-T., Chen, Y.-J., Chang, Z.-F. Thymidylate kinase is critical for DNA repair via ATM-dependent Tip60 complex formation.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Reparación del ADN , Lisina Acetiltransferasa 5/metabolismo , Complejos Multienzimáticos/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Células HEK293 , Células HeLa , Humanos , Lisina Acetiltransferasa 5/genética , Complejos Multienzimáticos/genética , Nucleósido-Fosfato Quinasa/genética , Fosforilación/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
7.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32708927

RESUMEN

NME3 is a member of the nucleoside diphosphate kinase (NDPK) family that binds to the mitochondrial outer membrane to stimulate mitochondrial fusion. In this study, we showed that NME3 knockdown delayed DNA repair without reducing the cellular levels of nucleotide triphosphates. Further analyses revealed that NME3 knockdown increased fragmentation of mitochondria, which in turn led to mitochondrial oxidative stress-mediated DNA single-strand breaks (SSBs) in nuclear DNA. Re-expression of wild-type NME3 or inhibition of mitochondrial fission markedly reduced SSBs and facilitated DNA repair in NME3 knockdown cells, while expression of N-terminal deleted mutant defective in mitochondrial binding had no rescue effect. We further showed that disruption of mitochondrial fusion by knockdown of NME4 or MFN1 also caused mitochondrial oxidative stress-mediated genome instability. In conclusion, the contribution of NME3 to redox-regulated genome stability lies in its function in mitochondrial fusion.


Asunto(s)
Daño del ADN , Mitocondrias/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Silenciamiento del Gen , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Mitocondrias/genética , Nucleósido Difosfato Quinasas NM23/genética
8.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126676

RESUMEN

Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.


Asunto(s)
Dinaminas/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Peroxisomas/metabolismo , Fracciones Subcelulares/metabolismo , Secuencia de Aminoácidos , Animales , Células HeLa , Homocigoto , Humanos , Rhodophyta , Homología de Secuencia
9.
J Cell Sci ; 128(20): 3757-68, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26359301

RESUMEN

Dexamethasone, a synthetic glucocorticoid, is often used to induce osteoblast commitment of mesenchymal stem cells (MSCs), and this process requires RhoA-dependent cellular tension. The underlying mechanism is unclear. In this study, we show that dexamethasone stimulates expression of fibronectin and integrin α5 (ITGA5), accompanied by an increase in the interaction of GEF-H1 (also known as ARHGEF2) with Sec5 (also known as EXOC2), a microtubule (MT)-regulated RhoA activator and a component of the exocyst, respectively. Disruption of this interaction abolishes dexamethasone-induced cellular tension and GEF-H1 targeting to focal adhesion sites at the cell periphery without affecting dexamethasone-induced levels of ITGA5 and fibronectin, and the extracellular deposition of fibronectin at adhesion sites is specifically inhibited. We demonstrate that dexamethasone stimulates the expression of serum-glucocorticoid-induced protein kinase 1 (SGK1), which is necessary and sufficient for the induction of the Sec5-GEF-H1 interaction. Given the function of SGK1 in suppressing MT growth, our data suggest that the induction of SGK1 through treatment with dexamethasone alters MT dynamics to increase Sec5-GEF-H1 interactions, which promote GEF-H1 targeting to adhesion sites. This mechanism is essential for the formation of fibronectin fibrils and their attachment to integrins at adhesion sites in order to generate cellular tension.


Asunto(s)
Dexametasona/farmacología , Inducción Enzimática/efectos de los fármacos , Proteínas Inmediatas-Precoces/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adhesión Celular/efectos de los fármacos , Humanos , Proteínas Inmediatas-Precoces/genética , Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteínas de Transporte Vesicular/genética
10.
Biochem J ; 473(9): 1237-45, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26945015

RESUMEN

Cellular supply of dNTPs via RNR (ribonucleotide reductase) is crucial for DNA replication and repair. It has been shown that DNA-damage-site-specific recruitment of RNR is critical for DNA repair efficiency in quiescent cells. The catalytic function of RNR produces dNDPs. The subsequent step of dNTP formation requires the function of NDP kinase. There are ten isoforms of NDP kinase in human cells. In the present study, we identified NME3 as one specific NDP kinase that interacts directly with Tip60, a histone acetyltransferase, to form a complex with RNR. Our data reveal that NME3 recruitment to DNA damage sites depends on this interaction. Disruption of interaction of NME3 with Tip60 suppressed DNA repair in serum-deprived cells. Thus Tip60 interacts with RNR and NME3 to provide site-specific synthesis of dNTP for facilitating DNA repair in serum-deprived cells which contain low levels of dNTPs.


Asunto(s)
Reparación del ADN/fisiología , Histona Acetiltransferasas/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Ribonucleótido Reductasas/metabolismo , Células HeLa , Histona Acetiltransferasas/genética , Humanos , Lisina Acetiltransferasa 5 , Células MCF-7 , Nucleósido Difosfato Quinasas NM23/genética , Ribonucleótido Reductasas/genética
11.
J Cell Sci ; 127(Pt 19): 4186-200, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25107365

RESUMEN

Focal adhesions (FAs) undergo maturation that culminates in size and composition changes that modulate adhesion, cytoskeleton remodeling and differentiation. Although it is well recognized that stimuli for osteogenesis of mesenchymal stem cells (MSCs) drive FA maturation, actin organization and stress fiber polarization, the extent to which FA-mediated signals regulated by the FA protein composition specifies MSC commitment remains largely unknown. Here, we demonstrate that, upon dexamethasone (osteogenic induction) treatment, guanine nucleotide exchange factor H1 (GEF-H1, also known as Rho guanine nucleotide exchange factor 2, encoded by ARHGEF2) is significantly enriched in FAs. Perturbation of GEF-H1 inhibits FA formation, anisotropic stress fiber orientation and MSC osteogenesis in an actomyosin-contractility-independent manner. To determine the role of GEF-H1 in MSC osteogenesis, we explore the GEF-H1-modulated FA proteome that reveals non-muscle myosin-II heavy chain-B (NMIIB, also known as myosin-10, encoded by MYH10) as a target of GEF-H1 in FAs. Inhibition of targeting NMIIB into FAs suppresses FA formation, stress fiber polarization, cell stiffness and osteogenic commitments in MSCs. Our data demonstrate a role for FA signaling in specifying MSC commitment.


Asunto(s)
Adhesiones Focales/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula , Humanos , Osteogénesis , Transducción de Señal
12.
Nucleic Acids Res ; 42(8): 4972-84, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24561807

RESUMEN

In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state.


Asunto(s)
Núcleo Celular/genética , Reparación del ADN , Mitocondrias/enzimología , Estrés Fisiológico/genética , Timidina Quinasa/fisiología , Nucleótidos de Timina/biosíntesis , Ciclo Celular , Línea Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Desoxirribonucleótidos/metabolismo , Genoma , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Timidina Quinasa/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Rayos Ultravioleta
13.
J Cell Sci ; 126(Pt 2): 657-66, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23178938

RESUMEN

Podosomes are actin-enriched membrane protrusions that play important roles in extracellular matrix degradation and invasive cell motility. Podosomes undergo self-assembly into large rosette-like structures in Src-transformed fibroblasts, osteoclasts and certain highly invasive cancer cells. Several protein tyrosine kinases have been shown to be important for the formation of podosome rosettes, but little is known regarding the role of protein tyrosine phosphatases in this process. We found that knockdown of the Src homolog domain-containing phosphatase 2 (SHP2) significantly increased podosome rosette formation in Src-transformed fibroblasts. By contrast, SHP2 overexpression suppressed podosome rosette formation in these cells. The phosphatase activity of SHP2 was essential for the suppression of podosome rosette formation. SHP2 selectively suppressed the tyrosine phosphorylation of Tks5, a scaffolding protein required for podosome formation. The inhibitory effect of SHP2 on podosome rosette formation was associated with the increased activation of Rho-associated kinase (ROCK) and the enhanced polymerization of vimentin filaments. A higher content of polymerized vimentin filaments was correlated with a lower content of podosome rosettes. Taken together, our findings indicate that SHP2 serves as a negative regulator of podosome rosette formation through the dephosphorylation of Tks5 and the activation of ROCK-mediated polymerization of vimentin in Src-transformed fibroblasts.


Asunto(s)
Fibroblastos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Familia-src Quinasas/metabolismo , Animales , Fibroblastos/citología , Fibroblastos/enzimología , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
14.
BMC Cancer ; 15: 943, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26626121

RESUMEN

BACKGROUND: Two isoforms of Rho-associated coiled-coil kinase (ROCK), ROCKI and ROCKII, play an important role in many cellular processes. Despite the accumulating evidence showing that ROCK could be a potential cancer therapeutic target, the relevant tumor types to ROCK activation are not well clarified. The aim of this study was to evaluate the ROCK activation status in different tumor types of breast cancer. RESULTS: We evaluated the immunoreactivities of phosphorylation-specific antibodies of ROCKI and ROCKII to inform their kinase activation in 275 of breast carcinoma tissues, including 56 of carcinoma in situ, 116 of invasive carcinoma, and 103 of invasive carcinoma with metastasis. ROCKII activation signal detected in nucleus was significantly correlated with tumor metastasis, while ROCKI and cytosolic ROCKII activation signals made no significant difference in that metastasis. Furthermore, nuclear ROCKII activation signal was associated with poor clinical outcome and correlated with late tumor stage, low expression of estrogen receptor (ER) and progesterone receptor (PR), overexpression of human epidermal growth factor receptor 2 (HER2) and high Ki67 labeling index. CONCLUSIONS: Nuclear ROCKII activation signal might contribute to the tumor metastasis in breast cancer. Differences in ROCK activation that underlie the phenotypes of breast cancer could enhance our understanding for the use of ROCK inhibitors in cancer therapy.


Asunto(s)
Neoplasias de la Mama/enzimología , Núcleo Celular/enzimología , Quinasas Asociadas a rho/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Activación Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Metástasis de la Neoplasia , Pronóstico
15.
Calcif Tissue Int ; 97(5): 466-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26126938

RESUMEN

Uremic patients are predisposed to atrophy of the alveolar bone and narrowing of the dental pulp chamber. Such pulp chamber changes have only been diagnosed radiologically; however, this has not been supported by any pathological evidence. We used a uremic rat model with secondary hyperparathyroidism induced by 5/6 nephrectomy surgery and high-phosphate diet to examine the dental pulp and adjacent alveolar bone pathology. In addition, we collected pulp tissues for real-time PCR. We found an opposite histopathological presentation of the ossified dental pulp and the osteomalacic adjacent alveolar bone. Furthermore, pulp cells with positive staining for Thy-1, a surrogate stem cell marker, were significantly reduced in the pulp of uremic rats compared to the controls, indicating a paucity of stem cells. This was further evidenced by the reduced pulp expression of dickkopf-1 (Dkk-1), a Wnt/ß-catenin signaling inhibitor produced by mesenchymal stem cells. In contrast, expressions of receptor activator of nuclear factor κB ligand (RANKL) and RANK in uremic pulp were up-regulated, probably to counteract the ossifying process of uremic pulp. In conclusion, uremic pulp ossifications were associated with a paucity of stem cells and dysregulated Dkk-1 and RANKL signaling systems, further shifting the imbalance toward osteogenesis. Strategies to counteract such an imbalance may offer a potential therapeutic target to improve dental health in uremic patients, which warrants further interventional studies.


Asunto(s)
Pérdida de Hueso Alveolar/etiología , Proceso Alveolar/patología , Pulpa Dental/patología , Osificación Heterotópica/etiología , Uremia/complicaciones , Animales , Densidad Ósea , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Osteogénesis/fisiología , Ligando RANK/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/patología , Microtomografía por Rayos X
16.
Nephrol Dial Transplant ; 30(8): 1356-63, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25817223

RESUMEN

BACKGROUND: The process of vascular calcification has been associated with the canonical Wnt/ß-catenin signalling pathway in cell cultures and animal studies. The relationship between circulating Wnt/ß-catenin inhibitors and vascular calcification in dialysis patients is unknown. The aim of this study was to investigate the associations between serum dickkopf-1 (Dkk-1) and sclerostin, two circulating inhibitors of the Wnt/ß-catenin signalling pathway, and the severity of aortic calcification (AoC) and cardiovascular outcomes in dialysis patients. METHODS: This was a prospective observational cohort study. One hundred and twenty-five patients on maintenance haemodialysis participated in the study. Serum levels of Dkk-1 and sclerostin were measured. AoC scores were calculated from plain films of both posterior-anterior and lateral views. The patients were followed up for 2 years or until death or withdrawal. RESULTS: The circulating sclerostin level was inversely associated with the severity of AoC (P = 0.035) and indicators of the bone turnover rate including serum alkaline phosphatase (ALP) (r = -0.235, P = 0.008) and intact parathyroid hormone (r = -0.523, P < 0.001). Furthermore, Cox regression analysis indicated that the patients with high circulating sclerostin levels were less likely to experience future cardiovascular events [1 pmol/L sclerostin increase, hazard ratio 0.982 (95% CI, 0.967-0.996), P = 0.015] after adjusting for a propensity score. In contrast, serum Dkk-1 was not associated with AoC and clinical outcomes. CONCLUSIONS: In long-term haemodialysis patients, circulating sclerostin but not Dkk-1 is inversely associated with AoCs and future cardiovascular events. Our findings suggest that sclerostin, as a bone-related protein, might act as a communicator between uraemic bone and vasculature.


Asunto(s)
Biomarcadores/sangre , Proteínas Morfogenéticas Óseas/sangre , Enfermedades Cardiovasculares/sangre , Péptidos y Proteínas de Señalización Intercelular/sangre , Diálisis Renal/efectos adversos , Uremia/sangre , Calcificación Vascular/sangre , Proteínas Adaptadoras Transductoras de Señales , Enfermedades Cardiovasculares/etiología , Estudios Transversales , Femenino , Marcadores Genéticos , Humanos , Masculino , Persona de Mediana Edad , Hormona Paratiroidea/sangre , Estudios Prospectivos , Uremia/etiología , Calcificación Vascular/etiología , Vía de Señalización Wnt
17.
Nat Commun ; 15(1): 2264, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480688

RESUMEN

NME3 is a member of the nucleoside diphosphate kinase (NDPK) family localized on the mitochondrial outer membrane (MOM). Here, we report a role of NME3 in hypoxia-induced mitophagy dependent on its active site phosphohistidine but not the NDPK function. Mice carrying a knock-in mutation in the Nme3 gene disrupting NME3 active site histidine phosphorylation are vulnerable to ischemia/reperfusion-induced infarction and develop abnormalities in cerebellar function. Our mechanistic analysis reveals that hypoxia-induced phosphatidic acid (PA) on mitochondria is essential for mitophagy and the interaction of DRP1 with NME3. The PA binding function of MOM-localized NME3 is required for hypoxia-induced mitophagy. Further investigation demonstrates that the interaction with active NME3 prevents DRP1 susceptibility to MUL1-mediated ubiquitination, thereby allowing a sufficient amount of active DRP1 to mediate mitophagy. Furthermore, MUL1 overexpression suppresses hypoxia-induced mitophagy, which is reversed by co-expression of ubiquitin-resistant DRP1 mutant or histidine phosphorylatable NME3. Thus, the site-specific interaction with active NME3 provides DRP1 a microenvironment for stabilization to proceed the segregation process in mitophagy.


Asunto(s)
Dinaminas , Mitofagia , Animales , Ratones , Dinaminas/genética , Dinaminas/metabolismo , Histidina/metabolismo , Hipoxia , Mitofagia/genética , Ubiquitinación
18.
J Biomed Sci ; 20: 83, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24168723

RESUMEN

BACKGROUND: Two isoforms of Rho-associated protein kinase (ROCK), ROCKI and ROCKII, play a pivotal role in regulation of cytoskeleton and are involved in multiple cellular processes in mammalian cells. Knockout mice experiments have indicated that the functions of ROCKI and II are probably non-redundant in physiology. However, it is difficult to differentiate the activation status of ROCKI and ROCKII in biological samples. Previously, we have identified phosphorylation site of ROCKII at Ser1366 residue sensitive to ROCK inhibition. We further investigated the activity-dependent phosphorylation site in ROCKI to establish the reagents that can be used to detect their individual activation. RESULTS: The phosphorylation site of ROCKI sensitive to its inhibition was identified to be the Ser1333 residue. The ROCKI pSer1333-specific antibody does not cross-react with phosphorylated ROCKII. The extent of S1333 phosphorylation of ROCKI correlates with myosin II light chain phosphorylation in cells in response to RhoA stimulation. CONCLUSIONS: Active ROCKI is phosphorylated at Ser1333 site. Antibodies that recognize phospho-Ser1333 of ROCKI and phospho-S1366 residues of ROCKII offer a means to discriminate their individual active status in cells and tissues.


Asunto(s)
Activación Enzimática , Serina/metabolismo , Quinasas Asociadas a rho/genética , Animales , Anticuerpos/aislamiento & purificación , Células HEK293 , Humanos , Inmunoprecipitación , Ratones , Fosforilación , Unión Proteica , Transfección , Quinasas Asociadas a rho/metabolismo
19.
Biochem J ; 443(1): 145-51, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22273145

RESUMEN

ROCK (Rho-associated protein kinase), a downstream effector of RhoA, plays an important role in many cellular processes. Accumulating evidence has shown the involvement of ROCK activation in the pathogenesis of many diseases. However, a reagent capable of detecting ROCK activation directly is lacking. In the present study, we show autophosphorylation of ROCKII in an in vitro kinase reaction. The phosphorylation sites were identified by MS, and the major phosphorylation site was found to be at the highly conserved residue Ser1366. A phospho-specific antibody was generated that can specifically recognize ROCKII Ser1366 phosphorylation. We found that the extent of Ser1366 phosphorylation of endogenous ROCKII is correlated with that of myosin light chain phosphorylation in cells in response to RhoA stimulation, showing that Ser1366 phosphorylation reflects its kinase activity. In addition, ROCKII Ser1366 phosphorylation could be detected in human breast tumours by immunohistochemical staining. The present study provides a new approach for revealing the ROCKII activation status by probing ROCKII Ser1366 phosphorylation directly in cells or tissues.


Asunto(s)
Activación Enzimática , Serina/metabolismo , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Anticuerpos/aislamiento & purificación , Western Blotting , Células HEK293 , Humanos , Inmunoprecipitación , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Piridinas/farmacología , Conejos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/inmunología , Proteína de Unión al GTP rhoA/metabolismo
20.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37584589

RESUMEN

Mitochondria are dynamic organelles regulated by fission and fusion processes. The fusion of membranes requires elaborative coordination of proteins and lipids and is particularly crucial for the function and quality control of mitochondria. Phosphatidic acid (PA) on the mitochondrial outer membrane generated by PLD6 facilitates the fusion of mitochondria. However, how PA promotes mitochondrial fusion remains unclear. Here, we show that a mitochondrial outer membrane protein, NME3, is required for PLD6-induced mitochondrial tethering or clustering. NME3 is enriched at the contact interface of two closely positioned mitochondria depending on PLD6, and NME3 binds directly to PA-exposed lipid packing defects via its N-terminal amphipathic helix. The PA binding function and hexamerization confer NME3 mitochondrial tethering activity. Importantly, nutrient starvation enhances the enrichment efficiency of NME3 at the mitochondrial contact interface, and the tethering ability of NME3 contributes to fusion efficiency. Together, our findings demonstrate NME3 as a tethering protein promoting selective fusion between PLD6-remodeled mitochondria for quality control.


Asunto(s)
Mitocondrias , Nucleósido Difosfato Quinasas NM23 , Ácidos Fosfatidicos , Fosfolipasa D , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA