Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 601(7891): 69-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987213

RESUMEN

The 660-kilometre seismic discontinuity is the boundary between the Earth's lower mantle and transition zone and is commonly interpreted as being due to the dissociation of ringwoodite to bridgmanite plus ferropericlase (post-spinel transition)1-3. A distinct feature of the 660-kilometre discontinuity is its depression to 750 kilometres beneath subduction zones4-10. However, in situ X-ray diffraction studies using multi-anvil techniques have demonstrated negative but gentle Clapeyron slopes (that is,  the ratio between pressure and temperature changes) of the post-spinel transition that do not allow a significant depression11-13. On the other hand, conventional high-pressure experiments face difficulties in accurate phase identification due to inevitable pressure changes during heating and the persistent presence of metastable phases1,3. Here we determine the post-spinel and akimotoite-bridgmanite transition boundaries by multi-anvil experiments using in situ X-ray diffraction, with the boundaries strictly based on the definition of phase equilibrium. The post-spinel boundary has almost no temperature dependence, whereas the akimotoite-bridgmanite transition has a very steep negative boundary slope at temperatures lower than ambient mantle geotherms. The large depressions of the 660-kilometre discontinuity in cold subduction zones are thus interpreted as the akimotoite-bridgmanite transition. The steep negative boundary of the akimotoite-bridgmanite transition will cause slab stagnation (a stalling of the slab's descent) due to significant upward buoyancy14,15.

2.
Chemphyschem ; 25(9): e202300604, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38426668

RESUMEN

We have performed in situ X-ray diffraction measurements of cubic silicon carbide (SiC) with a zinc-blende crystal structure (B3) at high pressures and temperatures using multi-anvil apparatus. The ambient volume inferred from the compression curves is smaller than that of the starting material. Using the 3rd-order Birch-Murnaghan equation of state and the Mie-Grüneisen-Debye model, we have determined the thermoelastic parameters of the B3-SiC to be K0=228±3 GPa, K0',=4.4±0.4, q=0.27±0.37, where K0, K0' and q are the isothermal bulk modulus, its pressure derivative and logarithmic volume dependence of the Grüneisen parameter, respectively. Using the 3rd-order Birch-Murnaghan EOS with the thermal expansion coefficient, the thermoelastic parameters have been found as K0=221±3 GPa, K0',=5.2±0.4, α0=0.90±0.02 ⋅ 10-5 ⋅ K-1, where α0 is the thermal expansion coefficient at room pressure and temperature. We have determined that paired B3-SiC - MgO calibrants can be used to estimate pressure and temperature simultaneously in ultrahigh-pressure experiments up to 60 GPa.

3.
Angew Chem Int Ed Engl ; 62(47): e202311516, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37768278

RESUMEN

A series of isostructural Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25-54 GPa) high-temperature (2000-3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln3 O2 (CN3 ) solids are composed of the hitherto unknown CN3 5- guanidinate anion-deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln3 O2 (CN3 ) compounds are recoverable to ambient conditions. The stabilization of the CN3 5- guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.

4.
J Synchrotron Radiat ; 29(Pt 2): 409-423, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254304

RESUMEN

Penetrating, high-energy synchrotron X-rays are in strong demand, particularly for high-pressure research in physics, chemistry and geosciences, and for materials engineering research under less extreme conditions. A new high-energy wiggler beamline P61 has been constructed to meet this need at PETRA III in Hamburg, Germany. The first part of the paper offers an overview of the beamline front-end components and beam characteristics. The second part describes the performance of the instrumentation and the latest developments at the P61B endstation. Particular attention is given to the unprecedented high-energy photon flux delivered by the ten wigglers of the PETRA III storage ring and the challenges faced in harnessing this amount of flux and heat load in the beam. Furthermore, the distinctiveness of the world's first six-ram Hall-type large-volume press, Aster-15, at a synchrotron facility is described for research with synchrotron X-rays. Additionally, detection schemes, experimental strategies and preliminary data acquired using energy-dispersive X-ray diffraction and radiography techniques are presented.

5.
J Chem Phys ; 140(16): 164508, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24784288

RESUMEN

In a wide range of P-T conditions, such fundamental characteristics as compressibility and thermoelastic properties remain unknown for most classes of organic compounds. Here we attempt to clarify this issue by the example of naphthalene as a model representative of polycyclic aromatic hydrocarbons (PAHs). The elastic behavior of solid naphthalene was studied by in situ synchrotron powder X-ray diffraction up to 13 GPa and 773 K and first principles computations to 20 GPa and 773 K. Fitting of the P-V experimental data to Vinet equation of state yielded T 0 = 8.4(3) GPa and T' = 7.2 (3) at V0 = 361 Å(3), whereas the thermal expansion coefficient was found to be extremely low at P > 3 GPa (about 10(-5) K(-1)), in agreement with theoretical estimation. Such a diminishing of thermal effects with the pressure increase clearly demonstrates a specific feature of the high-pressure behavior of molecular crystals like PAHs, associated with a low energy of intermolecular interactions.

6.
Front Chem ; 11: 1258389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867996

RESUMEN

Silicate perovskite, with the mineral name bridgmanite, is the most abundant mineral in the Earth's lower mantle. We investigated crystal structures and equations of state of two perovskite-type Fe3+-rich phases, FeMg0.5Si0.5O3 and Fe0.5Mg0.5Al0.5Si0.5O3, at high pressures, employing single-crystal X-ray diffraction and synchrotron Mössbauer spectroscopy. We solved their crystal structures at high pressures and found that the FeMg0.5Si0.5O3 phase adopts a novel monoclinic double-perovskite structure with the space group of P21/n at pressures above 12 GPa, whereas the Fe0.5Mg0.5Al0.5Si0.5O3 phase adopts an orthorhombic perovskite structure with the space group of Pnma at pressures above 8 GPa. The pressure induces an iron spin transition for Fe3+ in a (Fe0.7,Mg0.3)O6 octahedral site of the FeMg0.5Si0.5O3 phase at pressures higher than 40 GPa. No iron spin transition was observed for the Fe0.5Mg0.5Al0.5Si0.5O3 phase as all Fe3+ ions are located in bicapped prism sites, which have larger volumes than an octahedral site of (Al0.5,Si0.5)O6.

7.
Rev Sci Instrum ; 92(11): 113902, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852545

RESUMEN

We report a new rapid-quench technique for the Kawai-type multi-anvil press: several important improvements were made to our previous design. As a result, we are able to routinely quench melts with low glass-forming ability and form glasses. Owing to the use of 3D-printed parts to supply the coolant, the new design is easier to assemble and demonstrates better temperature stability and cooling rate. It was also found that the cooling rate is both pressure- and temperature-dependent. The cooling rate increases with increasing pressure from 6700 °C/s at 1 GPa to 8200 °C/s at 5.5 GPa and decreases with increasing temperature at a rate of 550 °C s-1/100 °C. Taking these dependencies into account, the new rapid-quench design produces more than 15% higher cooling rate compared to the previous design. Moreover, enhancing coolant circulation, which was achieved by using tapered inner anvils with holes, additionally increases the cooling rate by about 4%. As the structure of the rapid-quench assembly differs dramatically from other existing designs, pressure calibration and temperature distribution in the experimental cell and sample capsule were determined for the first time. It was found that the first 0.6 MN of press load is not used to generate pressure due to the hard tungsten components in the assembly. At the current state-of-the-art, it is possible to routinely reach a pressure of 9 GPa and a temperature of 2200 K with the temperature variation not exceeding 70 K within the sample capsule.

8.
Rev Sci Instrum ; 92(10): 103902, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717412

RESUMEN

We attempted to generate ultrahigh pressure and temperature simultaneously using a multi-anvil apparatus by combining the technologies of ultrahigh-pressure generation using sintered diamond (SD) anvils, which can reach 120 GPa, and ultrahigh-temperature generation using a boron-doped diamond (BDD) heater, which can reach 4000 K. Along with this strategy, we successfully generated a temperature of 3300 K and a pressure of above 50 GPa simultaneously. Although the high hardness of BDD significantly prevents high-pressure generation at low temperatures, its high-temperature softening allows for effective pressure generation at temperatures above 1200 K. High temperature also enhances high-pressure generation because of the thermal pressure. We expect to generate even higher pressure in the future by combining SD anvils and a BDD heater with advanced multi-anvil technology.

9.
Sci Rep ; 7(1): 7889, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28801612

RESUMEN

Temperature-induced oligomerization of polycyclic aromatic hydrocarbons (PAHs) was found at 500-773 K and ambient and high (3.5 GPa) pressures. The most intensive oligomerization at 1 bar and 3.5 GPa occurs at 740-823 K. PAH carbonization at high pressure is the final stage of oligomerization and occurs as a result of sequential oligomerization and polymerization of the starting material, caused by overlapping of π-orbitals, a decrease of intermolecular distances, and finally the dehydrogenation and polycondensation of benzene rings. Being important for building blocks of life, PAHs and their oligomers can be formed in the interior of the terrestrial planets with radii less than 2270 km.

10.
Appl Spectrosc ; 71(8): 1842-1848, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28195496

RESUMEN

The increasing demand for use of polymers at extreme conditions makes important the exploration of their behavior in a wide pressure and temperature range, which remains unknown for polytetrafluoroethylene (PTFE), one of the most common materials. An in situ Raman spectroscopic study of PTFE shows that it is stable within the range of 2-6 GPa at 500 ℃ and up to 12 GPa at 400 ℃. At T > 500 ℃ and P > 3.5 GPa, the graphitization of PTFE is observed, but judging from the preservation of liquid run products, PTFE can be used as a material for sample container up to 600 ℃ at this pressure. The obtained data allow the suggestion that the triple point between liquid, solid, and decomposed (carbonized) PTFE is located between 3 and 4 GPa at about 550 ℃, by analogy with the behavior of polycyclic aromatic hydrocarbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA