Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38180333

RESUMEN

A novel lichen-derived actinobacterium, designated Pm04-4T, was isolated from Pyxine cocoes (Sw.) Nyl. lichen collected from Chaiyaphum, Thailand. A polyphasic approach was used to describe the taxonomic position of the strain. The strain had morphological and chemotaxonomic properties similar to members of the genus Actinoplanes. It produced sporangia on the substrate mycelia. Meso-diaminopimelic acid, galactose, glucose and mannose were detected in the whole-cell hydrolysate of the strain. The major menaquinone was MK-9(H4). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Strain Pm04-4T showed the highest 16S rRNA gene sequence similarity to Actinoplanes akusuensis TRM 8003T (99.0 %). In the phylogenomic tree, strain Pm04-4T was positioned close to A. aksuensis TRM88003T, A. maris M416T, A. polyasparticus TRM66264T, A. hotanensis TRM88002T, A. abujensis DSM 45518T, A. bogorensis NBRC 110975T, A. brasiliensis DSM 43805T, A. lichenicola LDG1-01T and A. ovalisporus LDG1-06T. The average nucleotide identity and digital DNA-DNA hybridization values between strain Pm04-4T and its closely related neighbours were below the threshold values for describing new species. Moreover, the strain could be distinguished from its closely related type strains by phenotypic properties. Based on genotypic and phenotypic evidence, it can be concluded that strain Pm04-4T is a representative of a new Actinoplanes species for which the name Actinoplanes pyxinae sp. nov. is proposed. The type strain is Pm04-4T (=TBRC 16207T=NBRC 115836T). The type strain exhibited activity against Staphylococcus aureus ATCC 25923 as well as four yeast strains, namely Candida albicans TISTR 5554, Candida glabrata TISTR 5006, Candida krusei TISTR 5351 and Candida parapsilosis TISTR 5007. It also showed cytotoxicity against Caco-2, MNT-1 and MCF-7 cancer cells.


Asunto(s)
Actinoplanes , Antiinfecciosos , Líquenes , Humanos , Células CACO-2 , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base
2.
J Asian Nat Prod Res ; : 1-8, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904480

RESUMEN

Dendroochreatene (1), a new phenanthrene derivative with a spirolactone ring, was isolated from the whole Dendrobium ochreatum plant together with 11 known compounds (2-12). The structure of the new compound was elucidated spectroscopically and phenolic compounds were firstly reported from D. ochreatum. Moscatilin (4), major compound isolated from D. ochreatum, was found to be cytotoxic toward H460 lung-cancer cells, with an IC50 value of 147.3 ± 0.9 µM, while loddigesiinol C (7), C-α-methoxy derivative was inactive.

3.
J Nat Prod ; 86(5): 1294-1306, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37140218

RESUMEN

Three new phenanthrene derivatives (1, 2, 4), one new fluorenone (3), and four known compounds (5-8) were isolated from the ethyl acetate extract of Dendrobium crumenatum Sw. stems using column chromatography. The chemical structures were elucidated by analysis of spectroscopic data. The absolute configuration of 4 was determined by electronic circular dichroism calculation. We also evaluated the immunomodulatory effects of compounds isolated from D. crumenatum in human peripheral blood mononuclear cells from healthy individuals and those from patients with multiple sclerosis in vitro. Dendrocrumenol B (2) and dendrocrumenol D (4) showed strong immunomodulatory effects on both CD3+ T cells and CD14+ monocytes. Compounds 2 and 4 could reduce IL-2 and TNF production in T cells and monocytes that were treated with phorbol-12-myristate-13-acetate and ionomycin (PMA/Iono). Deep immune profiling using high-dimensional single-cell mass cytometry could confirm immunomodulatory effects of 4, quantified by the reduction of activated T cell population under PMA/Iono stimulation, in comparison to the stimulated T cells without treatment.


Asunto(s)
Dendrobium , Fenantrenos , Humanos , Dendrobium/química , Leucocitos Mononucleares , Monocitos , Fenantrenos/farmacología , Fenantrenos/química , Linfocitos T , Acetato de Tetradecanoilforbol/farmacología , Fluorenos/química , Fluorenos/farmacología
4.
Biol Res ; 56(1): 44, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542350

RESUMEN

BACKGROUND: Malignant cells adopt anoikis resistance to survive anchorage-free stresses and initiate cancer metastasis. It is still unknown how varying periods of anchorage loss contribute to anoikis resistance, cell migration, and metabolic reprogramming of cancerous cells. RESULTS: Our study demonstrated that prolonging the anchorage-free lifetime of non-small-cell lung cancer NCI-H460 cells for 7 days strengthened anoikis resistance, as shown by higher half-life and capability to survive and grow without anchorage, compared to wild-type cells or those losing anchorage for 3 days. While the prolonged anchorage-free lifetime was responsible for the increased aggressive feature of survival cells to perform rapid 3-dimensional migration during the first 3 h of a transwell assay, no significant influence was observed with 2-dimensional surface migration detected at 12 and 24 h by a wound-healing method. Metabolomics analysis revealed significant alteration in the intracellular levels of six (oxalic acid, cholesterol, 1-ethylpyrrolidine, 1-(3-methylbutyl)-2,3,4,6-tetramethylbenzene, ß-alanine, and putrescine) among all 37 identified metabolites during 7 days without anchorage. Based on significance values, enrichment ratios, and impact scores of all metabolites and their associated pathways, three principal metabolic activities (non-standard amino acid metabolism, cell membrane biosynthesis, and oxidative stress response) offered potential links with anoikis resistance. CONCLUSIONS: These findings further our insights into the evolution of anoikis resistance in lung cancer cells and identify promising biomarkers for early lung cancer diagnosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anoicis , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Metabolómica
5.
J Nat Prod ; 85(6): 1591-1602, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35679136

RESUMEN

Obesity and its global prevalence has become a threat to human health, while its pharmacotherapy via the application of natural products is still underdeveloped. Here, we probed how 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB) derived from an orchid (Dendrobium ellipsophyllum) could exert its roles on the differentiation and function of murine (3T3-L1) and human (PCS-210-010) pre-adipocytes and offer some implications to modulate obesity. Cytotoxic effects of TDB on adipocytes were 2-fold lower than those detected with pre-adipocytes, and no significant difference was detected in cytotoxic profiles between both cell lineages. TDB in a dose-dependent manner decreased cellular lipid accumulation and enhanced lipolysis of both cell lines assessed at early differentiation and during maturation. Underlining molecular mechanisms proved that TBD paused the cell cycle progression by regulating inducers and inhibitors in mitotic clonal expansion, leading to growth arrest of pre-adipocytes at the G0/G1 phase. The compound also governed adipocyte differentiation by repressing expressions of crucial adipogenic regulators and effectors through deactivating the AKT/GSK-3ß signaling pathway and activating the AMPK-ACC pathway. To this end, TDB has shown its pharmaceutical potential for modulating adipocyte development and function, and it would be a promising candidate for further assessments as a therapeutic agent to defeat obesity.


Asunto(s)
Adipogénesis , Bibencilos , Obesidad , Células 3T3-L1 , Animales , Bibencilos/farmacología , Diferenciación Celular , Dendrobium/química , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Obesidad/tratamiento farmacológico
6.
Mar Drugs ; 20(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35447911

RESUMEN

Cancer stem cells (CSCs) drive aggressiveness and metastasis by utilizing stem cell-related signals. In this study, 5-O-(N-Boc-l-alanine)-renieramycin T (OBA-RT) was demonstrated to suppress CSC signals and induce apoptosis. OBA-RT exerted cytotoxic effects with a half-maximal inhibitory concentration of approximately 7 µM and mediated apoptosis as detected by annexin V/propidium iodide using flow cytometry and nuclear staining assays. Mechanistically, OBA-RT exerted dual roles, activating p53-dependent apoptosis and concomitantly suppressing CSC signals. A p53-dependent pathway was indicated by the induction of p53 and the depletion of anti-apoptotic Myeloid leukemia 1 (Mcl-1) and B-cell lymphoma 2 (Bcl-2) proteins. Cleaved poly (ADP-ribose) polymerase (Cleaved-PARP) was detected in OBA-RT-treated cells. Interestingly, OBA-RT exerted strong CSC-suppressing activity, reducing the ability to form tumor spheroids. In addition, OBA-RT could induce apoptosis in CSC-rich populations and tumor spheroid collapse. CSC markers, including prominin-1 (CD133), Octamer-binding transcription factor 4 (Oct4), and Nanog Homeobox (Nanog), were notably decreased after OBA-RT treatment. Upstream CSCs regulating active Akt and c-Myc were significantly decreased; indicating that Akt may be a potential target of action. Computational molecular modeling revealed a high-affinity interaction between OBA-RT and an Akt molecule. This study has revealed a novel CSC inhibitory effect of OBA-RT via Akt inhibition, which may improve cancer therapy.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-akt , Alanina/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pulmonares/patología , Células Madre Neoplásicas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tetrahidroisoquinolinas , Proteína p53 Supresora de Tumor/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409284

RESUMEN

Because available depigmenting agents exhibit short efficacy and serious side effects, sericin, a waste protein from the silk industry, was hydrolyzed using Alcalase® to evaluate its anti-melanogenic activity in human melanin-producing cells. Sericin hydrolysates consisted of sericin-related peptides in differing amounts and smaller sizes compared with unhydrolyzed sericin, as respectively demonstrated by peptidomic and SDS-PAGE analysis. The lower half-maximum inhibitory concentration (9.05 ± 0.66 mg/mL) compared with unhydrolyzed sericin indicated a potent effect of sericin hydrolysates on the diminution of melanin content in human melanoma MNT1 cells. Not only inhibiting enzymatic activity but also a downregulated expression level of tyrosinase was evident in MNT1 cells incubated with 20 mg/mL sericin hydrolysates. Quantitative RT-PCR revealed the decreased mRNA level of microphthalmia-associated transcription factor (MITF), a tyrosinase transcription factor, which correlated with the reduction of pCREB/CREB, an upstream cascade, as assessed by Western blot analysis in MNT1 cells cultured with 20 mg/mL sericin hydrolysates for 12 h. Interestingly, treatment with sericin hydrolysates for 6-24 h also upregulated pERK, a molecule that triggers MITF degradation, in human melanin-producing cells. These results warrant the recycling of wastewater from the silk industry for further development as a safe and effective treatment of hyperpigmentation disorders.


Asunto(s)
Melaninas , Sericinas , Línea Celular Tumoral , Humanos , Melaninas/metabolismo , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Sericinas/metabolismo , Sericinas/farmacología , Subtilisinas/metabolismo , Subtilisinas/farmacología
8.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432003

RESUMEN

The most prevalent lung cancer is non-small cell lung cancer (NSCLC). This lung cancer type often develops other organ-specific metastases that are critical burdens in the treatment process. Orchid species in the genus Vanda have shown their potential in folkloric medication of diverse diseases but not all its species have been investigated, and little is known about their anticancer activities against NSCLC. Here, we firstly profiled the specialized metabolites of Vanda bensonii and examined their capability to inhibit growth and metastasis of NSCLC using NCI-H460 cells as a study model. Four phytochemicals, including phloretic acid methyl ester (1), cymbinodin-A (2), ephemeranthoquinone B (3), and protocatechuic acid (4), were isolated from the whole plant methanolic extract of V. bensonii. The most distinguished cytotoxic effect on NCI-H460 cells was observed in the treatments with crude methanolic extract and compound 2 with the half maximal inhibitory concentrations of 40.39 µg mL−1 and 50.82 µM, respectively. At non-cytotoxic doses (10 µg mL−1 or 10 µM), only compound 1 could significantly limit NCI-H460 cell proliferation when treated for 48 h, while others excluding compound 4 showed significant reduction in cell proliferation after treating for 72 h. Compound 1 also significantly decreased the migration rate of NCI-H460 cells examined through a wound-healing assay. Additionally, the crude extract and compound 1 strongly affected survival and growth of NCI-H460 cells under anchorage-independent conditions. Our findings proved that natural products from V. bensonii could be promising candidates for the future pharmacotherapy of NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Proliferación Celular , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
9.
Molecules ; 27(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36500361

RESUMEN

The Akt-mTOR signal is important for the survival and proliferation of cancer cells and has become an interesting drug target. In this study, five resveratrol derivatives were evaluated for anticancer activity and Akt/mTOR targeting activity in non-small lung cancer cell lines. The effects of resveratrol derivatives on cell proliferation were assessed by 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, nucleus staining, and colony formation assay. Furthermore, the effect of resveratrol derivatives on proliferation-related protein expression was analyzed by immunofluorescence and Western blotting. For the structure-activity relationship (SAR), results reveal that two derivatives of resveratrol which are 4,4'-(ethane-1,2-diyl) bis(2-methoxyphenol) (RD2) and the 4-(3-hydroxy-4-methoxyphenethyl)-2-methoxyphenol (RD3) had very similar structures but exerted different cytotoxicity. The IC50 of RD2 and RD3 were 108.6 ± 10.82 and more than 200 µM in the A549 cell line and 103.5 ± 6.08 and more than 200 µM in H23 cells, respectively. RD2 inhibited cell proliferation and induced apoptosis when compared with the control, while RD3 caused minimal effects. Cells treated with RD2 exhibited apoptotic nuclei in a concomitant with the reduction of cellular p-Akt and p-mTOR. RD3 had minimal effects on such proteins. According to these results, molecular docking analysis revealed a high-affinity interaction between RD2 and an Akt molecule at the ATP-binding and the allosteric sites, indicating this RD2 as a potential Akt inhibitor. This study provides useful information of resveratrol derivatives RD2 for treating lung cancer via Akt/mTOR inhibition.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-akt , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo
10.
Molecules ; 27(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35408617

RESUMEN

From the aerial parts of Cymbidium ensifolium, three new dihydrophenanthrene derivatives, namely, cymensifins A, B, and C (1−3) were isolated, together with two known compounds, cypripedin (4) and gigantol (5). Their structures were elucidated by analysis of their spectroscopic data. The anticancer potential against various types of human cancer cells, including lung, breast, and colon cancers as well as toxicity to normal dermal papilla cells were assessed via cell viability and nuclear staining assays. Despite lower cytotoxicity in lung cancer H460 cells, the higher % apoptosis and lower % cell viability were presented in breast cancer MCF7 and colon cancer CaCo2 cells treated with 50 µM cymensifin A (1) for 24 h compared with the treatment of 50 µM cisplatin, an available chemotherapeutic drug. Intriguingly, the half-maximum inhibitory concentration (IC50) of cymensifin A in dermal papilla cells at >200 µM suggested its selective anticancer activity. The obtained information supports the further development of a dihydrophenanthrene derivative from C. ensifolium as an effective chemotherapy with a high safety profile for the treatment of various cancers.


Asunto(s)
Neoplasias , Orchidaceae , Humanos , Orchidaceae/química
11.
Molecules ; 27(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208957

RESUMEN

Chemical investigation of Dendrobium delacourii revealed 11 phenolic compounds, and the structures of these compounds were determined by analysis of their NMR and HR-ESI-MS data. All compounds were investigated for their α-glucosidase inhibitory activity and anti-adipogenic properties. Phoyunnanin E (10) and phoyunnanin C (11) showed the most potent α-glucosidase inhibition by comparing with acarbose, which was used as a positive control. Kinetic study revealed the non-competitive inhibitors against the enzyme. For anti-adipogenic activity, densifloral B (3) showed the strongest inhibition when compared with oxyresveratrol (positive control). In addition, densifloral B might be responsible for the inhibition of adipocyte differentiation via downregulating the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer-binding protein alpha (C/EBPα), which are major transcription factors in adipogenesis.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dendrobium/química , Inhibidores de Glicósido Hidrolasas , Células 3T3-L1 , Animales , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Ratones
12.
Pharm Biol ; 60(1): 308-318, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35148231

RESUMEN

CONTEXT: Sericin, a protein found in wastewater from the silk industry, was shown to contain a variety of biological activities, including antioxidant. The enzymatic conditions have been continuously modified to improve antioxidant effect and scavenging capacity against various free radicals of silk sericin protein. OBJECTIVE: Variables in enzymatic reactions, including pH, temperature and enzyme/substrate ratio were analysed to discover the optimum conditions for antioxidant activity of sericin hydrolysates. MATERIALS AND METHODS: Hydrolysis reaction catalysed by Alcalase® was optimized through response surface methodology (RSM) in order to generate sericin hydrolysates possessing potency for % inhibition on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, ferric-reducing power and peroxyl scavenging capacity. Flow cytometry was performed to evaluate cellular ROS level in human HaCaT keratinocytes and melanin-generating MNT1 cells pre-treated either with 20 mg/mL RSM-optimized sericin hydrolysates or 5 mM N-acetyl cysteine (NAC) for 60 min prior exposure with 1 mM hydrogen peroxide (H2O2). RESULTS: Among these three variables, response surface plots demonstrate the major role of temperature on scavenging capacity of sericin hydrolysates. Sericin hydrolysates prepared by using Alcalase® at RSM-optimized condition (enzyme/substrate ratio: 1.5, pH: 7.5, temperature: 70 °C) possessed % inhibition against H2O2 at 99.11 ± 0.54% and 73.25 ± 8.32% in HaCaT and MNT1 cells, respectively, while pre-treatment with NAC indicated the % inhibition only at 30.26 ± 7.62% in HaCaT and 51.05 ± 7.14% in MNT1 cells. DISCUSSION AND CONCLUSIONS: The acquired RSM information would be of benefit for further developing antioxidant peptide from diverse resources, especially the recycling of waste products from silk industry.


Asunto(s)
Antioxidantes/farmacología , Depuradores de Radicales Libres/farmacología , Queratinocitos/efectos de los fármacos , Sericinas/farmacología , Línea Celular Tumoral , Citometría de Flujo , Células HaCaT , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis/efectos de los fármacos , Queratinocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Subtilisinas/metabolismo , Temperatura
13.
Biol Res ; 54(1): 22, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321115

RESUMEN

BACKGROUND: Accumulated evidence demonstrates cisplatin, a recommended chemotherapy, modulating pro-survival autophagic response that contributes to treatment failure in lung cancer patients. However, distinct mechanisms involved in cisplatin-induced autophagy in human lung cancer cells are still unclear. RESULTS: Herein, role of autophagy in cisplatin resistance was indicated by a decreased cell viability and increased apoptosis in lung cancer H460 cells pre-incubated with wortmannin, an autophagy inhibitor, prior to treatment with 50 µM cisplatin for 24 h. The elevated level of hydroxyl radicals detected via flow-cytometry corresponded to autophagic response, as evidenced by the formation of autophagosomes and autolysosomes in cisplatin-treated cells. Interestingly, apoptosis resistance, autophagosome formation, and the alteration of the autophagic markers, LC3-II/LC3-I and p62, as well as autophagy-regulating proteins Atg7 and Atg3, induced by cisplatin was abrogated by pretreatment of H460 cells with deferoxamine, a specific hydroxyl radical scavenger. The modulations in autophagic response were also indicated in the cells treated with hydroxyl radicals generated via Fenton reaction, and likewise inhibited by pretreatment with deferoxamine. CONCLUSIONS: In summary, the possible role of hydroxyl radicals as a key mediator in the autophagic response to cisplatin treatment, which was firstly revealed in this study would benefit for the further development of novel therapies for lung cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Autofagia , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Radical Hidroxilo/farmacología , Radical Hidroxilo/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico
14.
Mar Drugs ; 19(5)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063628

RESUMEN

It has been recognized that cancer stem-like cells (CSCs) in tumor tissue crucially contribute to therapeutic failure, resulting in a high mortality rate in lung cancer patients. Due to their stem-like features of self-renewal and tumor formation, CSCs can lead to drug resistance and tumor recurrence. Herein, the suppressive effect of jorunnamycin A, a bistetrahydroisoquinolinequinone isolated from Thai blue sponge Xestospongia sp., on cancer spheroid initiation and self-renewal in the CSCs of human lung cancer cells is revealed. The depletion of stemness transcription factors, including Nanog, Oct-4, and Sox2 in the lung CSC-enriched population treated with jorunnamycin A (0.5 µM), resulted from the activation of GSK-3ß and the consequent downregulation of ß-catenin. Interestingly, pretreatment with jorunnamycin A at 0.5 µM for 24 h considerably sensitized lung CSCs to cisplatin-induced apoptosis, as evidenced by upregulated p53 and decreased Bcl-2 in jorunnamycin A-pretreated CSC-enriched spheroids. Moreover, the combination treatment of jorunnamycin A (0.5 µM) and cisplatin (25 µM) also diminished CD133-overexpresssing cells presented in CSC-enriched spheroids. Thus, evidence on the regulatory functions of jorunnamycin A may facilitate the development of this marine-derived compound as a novel chemotherapy agent that targets CSCs in lung cancer treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Isoquinolinas/farmacología , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/efectos de los fármacos , Quinolonas/farmacología , Esferoides Celulares/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Isoquinolinas/química , Isoquinolinas/aislamiento & purificación , Neoplasias Pulmonares/tratamiento farmacológico , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinolonas/química , Quinolonas/aislamiento & purificación , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Xestospongia/química
15.
Molecules ; 26(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34641584

RESUMEN

Despite its classification as a non-life-threatening disease, increased skin pigmentation adversely affects quality of life and leads to loss of self-confidence. Until now, there are no recommended remedies with high efficacy and human safety for hyperpigmentation. This study aimed to investigate anti-melanogenic activity and underlying mechanism of cajanin, an isoflavonoid extracted from Dalbergia parviflora Roxb. (Leguminosae) in human melanin-producing cells. Culture with 50 µM cajanin for 48-72 h significantly suppressed proliferation in human melanoma MNT1 cells assessed via MTT viability assay. Interestingly, cajanin also efficiently diminished melanin content in MNT1 cells with the half maximum inhibitory concentration (IC50) at 77.47 ± 9.28 µM. Instead of direct inactivating enzymatic function of human tyrosinase, down-regulated mRNA and protein expression levels of MITF and downstream melanogenic enzymes, including tyrosinase, TRP-1 and Dct (TRP-2) were observed in MNT1 cells treated with 50 µM cajanin for 24-72 h. Correspondingly, treatment with cajanin modulated the signaling pathway of CREB and ERK which both regulate MITF expression level. Targeted suppression on MITF-related proteins in human melanin-producing cells strengthens the potential development of cajanin as an effective treatment for human hyperpigmented disorders.


Asunto(s)
Isoflavonas/farmacología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/efectos de los fármacos , Factor de Transcripción Asociado a Microftalmía/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dalbergia/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Hiperpigmentación/tratamiento farmacológico , Interferón Tipo I/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Isoflavonas/química , Melaninas/biosíntesis , Melanocitos/efectos de los fármacos , Melanocitos/enzimología , Melanocitos/metabolismo , Melanoma/enzimología , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/farmacología , Proteínas Gestacionales/metabolismo , Calidad de Vida
16.
Molecules ; 25(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069989

RESUMEN

The inherent limitations, including serious side-effects and drug resistance, of current chemotherapies necessitate the search for alternative treatments especially for lung cancer. Herein, the anticancer activity of colicin N, bacteria-produced antibiotic peptide, was investigated in various human lung cancer cells. After 24 h of treatment, colicin N at 5-15 µM selectively caused cytotoxicity detected by MTT assay in human lung cancer H460, H292 and H23 cells with no noticeable cell death in human dermal papilla DPCs cells. Flow cytometry analysis of annexin V-FITC/propidium iodide indicated that colicin N primarily induced apoptosis in human lung cancer cells. The activation of extrinsic apoptosis evidenced with the reduction of c-FLIP and caspase-8, as well as the modulation of intrinsic apoptosis signaling proteins including Bax and Mcl-1 were observed via Western blot analysis in lung cancer cells cultured with colicin N (10-15 µM) for 12 h. Moreover, 5-15 µM of colicin N down-regulated the expression of activated Akt (p-Akt) and its upstream survival molecules, integrin ß1 and αV in human lung cancer cells. Taken together, colicin N exhibits selective anticancer activity associated with suppression of integrin-modulated survival which potentiate the development of a novel therapy with high safety profile for treatment of human lung cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Colicinas/farmacología , Neoplasias Pulmonares/metabolismo , Western Blotting , Caspasa 8/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Integrinas/metabolismo , Propidio/farmacología , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
17.
J Nat Prod ; 82(7): 1861-1873, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31260310

RESUMEN

Metastasis is a key driving force behind the high mortality rate associated with lung cancer. Herein, we report the first study revealing the antimetastasis activity of jorunnamycin A, a bistetrahydroisoquinolinequinone isolated from a Thai blue sponge Xestospongia sp. evidenced by its inhibition of epithelial to mesenchymal transition (EMT), sensitization of anoikis, and suppression of anchorage-independent survival in human lung cancer cells. Treatment with jorunnamycin A (0.05-0.5 µM) altered the expression of p53 and Bcl-2 family proteins, particularly causing the down-regulation of antiapoptosis Bcl-2 and Mcl-1 proteins. Under detachment conditions for 12 h, jorunnamycin A-treated cells exhibited diminution of pro-survival proteins p-Akt and p-Erk as well as the survival-promoting factor caveolin-1. Corresponding with the inhibition on the Akt and Erk pathway as well as activation of p53, there was an increase in the epithelial marker E-cadherin and a remarkable decrease of EMT markers and associated proteins including vimentin, snail, and claudin-1. As the loss of anchorage dependence is an important barrier to metastasis, the observed inhibitory effects of jorunnamycin A on the coordinating networks of EMT and anchorage-independent growth emphasize the potential development of jorunnamycin A as an effective agent against lung cancer metastasis.


Asunto(s)
Anoicis/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Isoquinolinas/farmacología , Neoplasias Pulmonares/patología , Quinolonas/farmacología , Xestospongia/química , Animales , División Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Humanos , Isoquinolinas/aislamiento & purificación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinolonas/aislamiento & purificación
18.
J Biomed Sci ; 25(1): 32, 2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-29631569

RESUMEN

BACKGROUND: During metastasis, cancer cells require anokis resistant mechanism to survive until reach the distant secondary tissues. As anoikis sensitization may benefit for cancer therapy, this study demonstrated the potential of avicequinone B, a natural furanonaphthoquinone found in mangrove tree (Avicenniaceae) to sensitize anoikis in human lung cancer cells. METHODS: Anoikis inducing effect was investigated in human lung cancer H460, H292 and H23 cells that were cultured in ultra-low attachment plate with non-cytotoxic concentrations of avicequinone B. Viability of detached cells was evaluated by XTT assay at 0-24 h of incubation time. Soft agar assay was performed to investigate the inhibitory effect of avicequinone B on anchorage-independent growth. The alteration of anoikis regulating molecules including survival and apoptosis proteins were elucidated by western blot analysis. RESULTS: Avicequinone B at 4 µM significantly induced anoikis and inhibited proliferation under detachment condition in various human lung cancer cells. The reduction of anti-apoptotic proteins including anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1) associating with the diminution of integrin/focal adhesion kinase (FAK)/Proto-oncogene tyrosine-protein kinase (Src) signals were detected in avicequinone B-treated cells. CONCLUSIONS: Avicequinone B sensitized anoikis in human lung cancer cells through down-regulation of anti-apoptosis proteins and integrin-mediated survival signaling.


Asunto(s)
Anoicis/efectos de los fármacos , Antineoplásicos/farmacología , Naftoquinonas/farmacología , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Proto-Oncogenes Mas , Transducción de Señal/efectos de los fármacos
20.
Pharm Biol ; 55(1): 1792-1799, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28532227

RESUMEN

CONTEXT: Lentinus squarrosulus Mont. (Polyporaceae) is an interesting source of diverse bioactive compounds. OBJECTIVE: This is the first study of the anticancer activity and underlying mechanism of peptides extracted from Lentinus squarrosuls. MATERIALS AND METHODS: Peptides were isolated from the aqueous extract of L. squarrosulus by employing solid ammonium sulphate precipitation. They were further purified by ion-exchange chromatography on diethylaminoethanol (DEAE)-cellulose and gel filtration chromatography on Sephadex G25. Anticancer activity was investigated in human lung cancer H460, H292 and H23 cells cultured with 0-40 µg/mL of peptide extracts for 24 h. Cell viability and mode of cell death were evaluated by MTT and nuclear staining assay, respectively. Western blotting was used to investigate the alteration of apoptosis-regulating proteins in lung cancer cells treated with peptide extracts (0-20 µg/mL) for 24 h. RESULTS: The cytotoxicity of partially-purified peptide extracts from L. squarrosulus was indicated with IC50 of ∼26.84 ± 2.84, 2.80 ± 2.14 and 18.84 ± 0.30 µg/mL in lung cancer H460, H292 and H23 cells, respectively. The extracts at 20 µg/mL induced apoptosis through the reduction of anti-apoptotic Bcl-2 protein (∼0.5-fold reduction) and up-regulation of BAX (∼4.5-fold induction), a pro-apoptotic protein. Furthermore, L. squarrosulus peptide extracts (20 µg/mL) also decreased the cellular level of death receptor inhibitor c-FLIP (∼0.6-fold reduction). CONCLUSIONS AND DISCUSSION: This study provides the novel anticancer activity and mechanism of L. squarrosulus peptide extracts, which encourage further investigation and development of the extracts for anticancer use.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Lentinula/química , Neoplasias Pulmonares/tratamiento farmacológico , Péptidos/farmacología , Células A549 , Antineoplásicos/aislamiento & purificación , Proteínas Reguladoras de la Apoptosis/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Péptidos/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA