Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Electron Mater ; 4(7): 3623-3631, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35937184

RESUMEN

Perovskite stannate SrSnO3 (SSO) is attracting attention as ultraviolet transparent conducting oxides (UV TCOs) due to its ultrawide band gap and high conductivity. Here, we investigate in detail the thickness-dependent electrical, structural, and optical properties of sequentially strain-relaxed La-doped SrSnO3 (SLSO) epitaxial thin films. We find that the SLSO films grow as an orthorhombic Pnma phase with a - a - c + in the c + direction under the tensile strain. With the strain relaxation, as the films become thicker, vertical grain boundaries are created and the orthorhombic phase becomes reoriented to all three possible orientations. Simultaneously, the conductance starts to deviate from the linear behavior with increasing film thickness. Through the analysis of thickness fringes in optical transmittance, we found that a 120 nm thick nominally 4% La-doped SrSnO3 film has a figure of merit (φTC = 2.65 × 10-3 Ω-1) at λ = 300 nm in the deep-UV region, which is the highest value among the well-known candidates for UV TCOs reported to date.

2.
Sci Adv ; 8(11): eabm3962, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302844

RESUMEN

Scaling down of semiconductor devices requires high-k dielectric materials to continue lowering the operating voltage of field-effect transistors (FETs) and storing sufficient charge on a smaller area. Here, we investigate the dielectric properties of epitaxial BaHf0.6Ti0.4O3 (BHTO), an alloy of perovskite oxide barium hafnate (BaHfO3) and barium titanate (BaTiO3). We found the dielectric constant, the breakdown field, and the leakage current to be 150, 5.0 megavolts per centimeter (MV cm-1), and 10-4 amperes per square centimeter at 2 MV cm-1, respectively. The results suggest that two-dimensional (2D) carrier density of more than n2D = 1014 per square centimeter (cm-2) could be modulated by the BHTO gate oxide. We demonstrate an n-type accumulation mode FET and direct suppression of more than n2D = 1014 cm-2 via an n-type depletion-mode FET. We attribute the large dielectric constant, high breakdown field, and low leakage current of BHTO to the nanometer scale stoichiometric modulation of hafnium and titanium.

3.
Nat Mater ; 7(6): 459-63, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18425133

RESUMEN

At micro- and nanoscales, materials with high Young's moduli and low densities are of great interest for high-frequency micromechanical resonator devices. Incorporating carbon nanotubes (CNTs), with their unmatched properties, has added functionality to many man-made composites. We report on the fabrication of < or = 100-nm-thick laminates by sputter-deposition of aluminium onto a two-dimensional single-walled CNT network. These nanolaminates--composed of Al, its native oxide Al(2)O(3) and CNTs--are fashioned, in a scalable manner, into suspended doubly clamped micromechanical beams. Dynamic flexural measurements show marked increases in resonant frequencies for nanolaminates with Al-CNT laminae. Such increases, further supported by quasi-static flexural measurements, are partly attributable to enhancements in elastic properties arising from the addition of CNTs. As a consequence, these nanolaminate micromechanical resonators show significant suppression of mechanical nonlinearity and enhanced strength, both of which are advantageous for practical applications and analogous to biological nanocomposites, similarly composed of high-aspect-ratio, mechanically superior mineral platelets in a soft protein matrix.


Asunto(s)
Aluminio/química , Nanotubos de Carbono
4.
Sci Rep ; 9(1): 16202, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700133

RESUMEN

In order to explain the experimental sheet carrier density n2D at the interface of BaSnO3/LaInO3, we consider a model that is based on the presence of interface polarization in LaInO3 which extends over 2 pseudocubic unit cells from the interface and eventually disappears in the next 2 unit cells. Considering such interface polarization in calculations based on 1D Poisson-Schrödinger equations, we consistently explain the dependence of the sheet carrier density of BaSnO3/LaInO3 heterinterfaces on the thickness of the LaInO3 layer and the La doping of the BaSnO3 layer. Our model is supported by a quantitative analysis of atomic position obtained from high resolution transmission electron microscopy which evidences suppression of the octahedral tilt and a vertical lattice expansion in LaInO3 over 2-3 pseudocubic unit cells at the coherently strained interface.

5.
J Phys Condens Matter ; 28(9): 094003, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26871992

RESUMEN

We fabricated and analyzed the electrical transport characteristics of vertical type alkanethiolate molecular junctions using the high-yield fabrication method that we previously reported. The electrical characteristics of the molecular electronic junctions were statistically collected and investigated in terms of current density and transport parameters based on the Simmons tunneling model, and we determined representative current-voltage characteristics of the molecular junctions. In particular, we examined the statistical variations in the length-dependent electrical characteristics, especially the Gaussian standard deviation σ of the current density histogram. From the results, we found that the magnitude of the σ value can be dependent on the individual molecular length due to specific microscopic structures in the molecular junctions. The probable origin of the molecular length-dependent deviation of the electrical characteristics is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA