Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochemistry ; 61(4): 217-227, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35073057

RESUMEN

The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Graso Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Proteína Transportadora de Acilo/química , Secuencia de Aminoácidos , Quimera/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Acido Graso Sintasa Tipo II/metabolismo , Ácido Graso Sintasas/química , Ácidos Grasos/metabolismo , Simulación de Dinámica Molecular , Sintasas Poliquetidas/química , Policétidos/metabolismo , Resonancia por Plasmón de Superficie/métodos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
2.
J Biol Chem ; 296: 100328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33493513

RESUMEN

Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Policétidos/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas , Sondas Moleculares/química , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
3.
Nucleic Acids Res ; 48(D1): D454-D458, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31612915

RESUMEN

Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/.


Asunto(s)
Bases de Datos Genéticas , Genoma Bacteriano , Genómica/métodos , Familia de Multigenes , Programas Informáticos , Vías Biosintéticas/genética , Anotación de Secuencia Molecular
4.
PLoS Biol ; 16(11): e3000061, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30500814

RESUMEN

Scientific outreach efforts traditionally involve formally trained scientists teaching the general public about the methods, significance, and excitement of science. We recently experimented with an alternative "symbiotic outreach" model that prioritizes building a reciprocal relationship between formally trained and "outsider" scientists to facilitate active two-way communication. Herein, we present the results of our outreach effort involving college students and adults with intellectual and developmental disabilities working together to make biological and multimedia art. By discussing the steps others can take to cultivate reciprocal outreach within their local communities, we hope to lower the barrier for widespread adoption of similar approaches and ultimately to decrease the gap between formally trained scientists and the general public.


Asunto(s)
Educación de las Personas con Discapacidad Intelectual/métodos , Ciencia/educación , Adulto , Arte , Comunicación , Relaciones Comunidad-Institución/tendencias , Humanos , Discapacidad Intelectual , Estudiantes , Universidades , Adulto Joven
5.
PLoS Biol ; 15(11): e2003145, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29091712

RESUMEN

How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.


Asunto(s)
Bioquímica/educación , Curriculum , Mapas de Interacción de Proteínas , Investigación/educación , Enseñanza , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Laboratorios/normas , Aprendizaje , Oxigenasas de Función Mixta/metabolismo , Estudiantes
6.
Bioorg Med Chem ; 28(20): 115686, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069071

RESUMEN

Enzyme assemblies such as type II polyketide synthases (PKSs) produce a wide array of bioactive secondary metabolites. While the molecules produced by type II PKSs have found remarkable clinical success, the biosynthetic prowess of these enzymes has been stymied by 1) the inability to reconstitute the bioactivity of the minimal PKS enzymes in vitro and 2) limited exploration of type II PKSs from diverse phyla. To begin filling this unmet need, we expressed, purified, and characterized the ketosynthase chain length factor (KS-CLF) and acyl carrier protein (ACP) from Ktedonobacter racemifer (Kr). Using E. coli as a heterologous host, we obtained soluble proteins in titers signifying improvements over previous KS-CLF heterologous expression efforts. Characterization of these enzymes reveals that KrACP has self-malonylating activity. Sedimentation velocity analytical ultracentrifugation (SV-AUC) analysis of holo-KrACP and KrKS-CLF indicates that these enzymes do not interact in vitro, suggesting that the acylated state of these proteins might play an important role in facilitating biosynthetically relevant interactions. These results lay important groundwork for optimizing the interaction between KrKS-CLF and KrACP and exploring the biosynthetic potential of other non-actinomycete type II PKSs.


Asunto(s)
Chloroflexi/enzimología , Escherichia coli/metabolismo , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/aislamiento & purificación , Sintasas Poliquetidas/metabolismo
7.
Biochemistry ; 57(4): 383-389, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29048882

RESUMEN

Course-based undergraduate research experiences (CUREs) have gained traction as effective ways to expand the impact of undergraduate research while fulfilling pedagogical goals. In this Perspective, we present innovative ways to incorporate fundamental benefits and principles of CUREs into a classroom environment through information/technology-based research projects that lead to student-generated contributions to digital community resources (CoRes). These projects represent an attractive class of CUREs because they are less resource-intensive than laboratory-based CUREs, and the projects align with the expectations of today's students to create rapid and publicly accessible contributions to society. We provide a detailed discussion of two example types of CoRe projects that can be implemented in courses to impact research and education at the chemistry-biology interface: bioinformatics annotations and development of educational tools. Finally, we present current resources available for faculty interested in incorporating CUREs or CoRe projects into their pedagogical practices. In sharing these stories and resources, we hope to lower the barrier for widespread adoption of CURE and CoRe approaches and generate discussions about how to utilize the classroom experience to make a positive impact on our students and the future of the field of biochemistry.


Asunto(s)
Bioquímica/educación , Relaciones Comunidad-Institución , Biología Computacional , Colaboración Intersectorial , Investigación/organización & administración , Estudiantes , Humanos , Internet
8.
Proc Natl Acad Sci U S A ; 112(45): 13952-7, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26499248

RESUMEN

Natural product biosynthetic pathways generate molecules of enormous structural complexity and exquisitely tuned biological activities. Studies of natural products have led to the discovery of many pharmaceutical agents, particularly antibiotics. Attempts to harness the catalytic prowess of biosynthetic enzyme systems, for both compound discovery and engineering, have been limited by a poor understanding of the evolution of the underlying gene clusters. We developed an approach to study the evolution of biosynthetic genes on a cluster-wide scale, integrating pairwise gene coevolution information with large-scale phylogenetic analysis. We used this method to infer the evolution of type II polyketide gene clusters, tracing the path of evolution from the single ancestor to those gene clusters surviving today. We identified 10 key gene types in these clusters, most of which were swapped in from existing cellular processes and subsequently specialized. The ancestral type II polyketide gene cluster likely comprised a core set of five genes, a roster that expanded and contracted throughout evolution. A key C24 ancestor diversified into major classes of longer and shorter chain length systems, from which a C20 ancestor gave rise to the majority of characterized type II polyketide antibiotics. Our findings reveal that (i) type II polyketide structure is predictable from its gene roster, (ii) only certain gene combinations are compatible, and (iii) gene swaps were likely a key to evolution of chemical diversity. The lessons learned about how natural selection drives polyketide chemical innovation can be applied to the rational design and guided discovery of chemicals with desired structures and properties.


Asunto(s)
Evolución Química , Evolución Molecular , Familia de Multigenes , Sintasas Poliquetidas/genética , Policétidos/química , Filogenia
9.
Biochemistry ; 56(20): 2533-2536, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28448715

RESUMEN

Acyl carrier proteins (ACPs) are central hubs in polyketide and fatty acid biosynthetic pathways, but the fast motions of the ACP's phosphopantetheine (Ppant) arm make its conformational dynamics difficult to capture using traditional spectroscopic approaches. Here we report that converting the terminal thiol of Escherichia coli ACP's Ppant arm into a thiocyanate activates this site to form a selective cross-link with the active site cysteine of its partner ketoacyl synthase (FabF). The reaction releases a cyanide anion, which can be detected by infrared spectroscopy. This represents a practical and generalizable method for obtaining and visualizing ACP-protein complexes relevant to biocatalysis and will be valuable in future structural and engineering studies.


Asunto(s)
Proteína Transportadora de Acilo/química , Cianuros/química , Sintasas Poliquetidas/química , Cromatografía en Gel , Proteínas de Escherichia coli/química
10.
J Chem Educ ; 94(3): 375-379, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29255327

RESUMEN

Over the past decade, mechanistic crosslinking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. The development of an experiment to engage undergraduate students in multidisciplinary research is described that leverages mechanistic crosslinking probes to study protein conformations and protein-protein interactions. This experiment provides students with a platform to learn chemoenzymatic synthesis, polyacrylamide gel electrophoresis, biochemical assays, and computational docking all while exploring a contemporary biochemical topic.

11.
Fungal Genet Biol ; 89: 18-28, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26808821

RESUMEN

Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and synthetic biology efforts toward discovering novel fungal enzymes and metabolites.


Asunto(s)
Productos Biológicos , Vías Biosintéticas/genética , Genes Fúngicos , Genoma Fúngico , Familia de Multigenes , Alcaloides , Secuencia de Aminoácidos , Biología Computacional , Curaduría de Datos , Hongos/genética , Filogenia , Policétidos , Terpenos
12.
Anal Biochem ; 495: 42-51, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26655390

RESUMEN

Bacteria and fungi use non-ribosomal peptide synthetases (NRPSs) to produce peptides of broad structural diversity and biological activity, many of which have proven to be of great importance for human health. The impressive diversity of non-ribosomal peptides originates in part from the action of tailoring enzymes that modify the structures of single amino acids and/or the mature peptide. Studying the interplay between tailoring enzymes and the peptidyl carrier proteins (PCPs) that anchor the substrates is challenging owing to the transient and complex nature of the protein-protein interactions. Using sedimentation velocity (SV) methods, we studied the collaboration between the PCPs and cytochrome P450 enzyme that results in the installation of ß-hydroxylated amino acid precursors in the biosynthesis of the depsipeptide skyllamycin. We show that SV methods developed for the analytical ultracentrifuge are ideally suited for a quantitative exploration of PCP-enzyme equilibrium interactions. Our results suggest that the PCP itself and the presence of substrate covalently tethered to the PCP together facilitate productive PCP-P450 interactions, thereby revealing one of nature's intricate strategies for installing interesting functionalities using natural product synthetases.


Asunto(s)
Depsipéptidos/análisis , Péptido Sintasas/metabolismo , Ultracentrifugación , Aminoácidos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Depsipéptidos/biosíntesis , Hidroxilación , Estructura Terciaria de Proteína
13.
Angew Chem Int Ed Engl ; 55(34): 9834-40, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27435901

RESUMEN

The nonribosomal peptide synthetases (NRPSs) are one of the most promising resources for the production of new bioactive molecules. The mechanism of NRPS catalysis is based around sequential catalytic domains: these are organized into modules, where each module selects, modifies, and incorporates an amino acid into the growing peptide. The intermediates formed during NRPS catalysis are delivered between enzyme centers by peptidyl carrier protein (PCP) domains, which makes PCP interactions and movements crucial to NRPS mechanism. PCP movement has been linked to the domain alternation cycle of adenylation (A) domains, and recent complete NRPS module structures provide support for this hypothesis. However, it appears as though the A domain alternation alone is insufficient to account for the complete NRPS catalytic cycle and that the loaded state of the PCP must also play a role in choreographing catalysis in these complex and fascinating molecular machines.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptido Sintasas/metabolismo , Péptidos/metabolismo , Biocatálisis , Proteínas Portadoras/química , Modelos Moleculares , Conformación Molecular , Péptido Sintasas/química , Péptidos/química , Conformación Proteica
14.
J Am Chem Soc ; 136(32): 11240-3, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25080832

RESUMEN

Acyl carrier proteins (ACPs) are universal and highly conserved domains central to both fatty acid and polyketide biosynthesis. These proteins tether reactive acyl intermediates with a swinging 4'-phosphopantetheine (Ppant) arm and interact with a suite of catalytic partners during chain transport and elongation while stabilizing the growing chain throughout the biosynthetic pathway. The flexible nature of the Ppant arm and the transient nature of ACP-enzyme interactions impose a major obstacle to obtaining structural information relevant to understanding polyketide and fatty acid biosynthesis. To overcome this challenge, we installed a thiocyanate vibrational spectroscopic probe on the terminal thiol of the ACP Ppant arm. This site-specific probe successfully reported on the local environment of the Ppant arm of two ACPs previously characterized by solution NMR, and was used to determine the solution exposure of the Ppant arm of an ACP from 6-deoxyerythronolide B synthase (DEBS). Given the sensitivity of the probe's CN stretching band to conformational distributions resolved on the picosecond time scale, this work lays a foundation for observing the dynamic action-related structural changes of ACPs using vibrational spectroscopy.


Asunto(s)
Proteína Transportadora de Acilo/química , Catálisis , Ácidos Grasos/química , Geobacter/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Sintasas Poliquetidas/química , Policétidos/química , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Espectrofotometría , Streptomyces coelicolor/química , Factores de Tiempo
15.
J Am Chem Soc ; 135(10): 3752-5, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23442197

RESUMEN

A-74528 is a C30 polyketide natural product that functions as an inhibitor of 2',5'-oligoadenylate phosphodiesterase (2'-PDE), a key regulatory enzyme of the interferon pathway. Modulation of 2'-PDE represents a unique therapeutic approach for regulating viral infections. The gene cluster responsible for biosynthesis of A-74528 yields minute amounts of this natural product together with considerably larger quantities of a structurally dissimilar C30 cytotoxic agent, fredericamycin. Through construction and analysis of a series of knockout mutants, we identified the genes necessary for A-74528 biosynthesis. Remarkably, the formation of six stereocenters and the regiospecific formation of six rings in A-74528 appear to be catalyzed by only two tailoring enzymes, a cyclase and an oxygenase, in addition to the core polyketide synthase. The inferred pathway was genetically refactored in a heterologous host, Streptomyces coelicolor CH999, to produce 3 mg/L A-74528 in the absence of fredericamycin.


Asunto(s)
Adenilil Ciclasas/metabolismo , Oxigenasas/metabolismo , Compuestos Policíclicos/metabolismo , Pironas/metabolismo , Streptomyces coelicolor/metabolismo , Estructura Molecular , Compuestos Policíclicos/química , Pironas/química , Streptomyces coelicolor/química
17.
Microb Genom ; 9(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36951894

RESUMEN

Nature serves as a rich source of molecules with immense chemical diversity. Aptly named, these 'natural products' boast a wide variety of environmental, medicinal and industrial applications. Type II polyketides, in particular, confer substantial medicinal benefits, including antibacterial, antifungal, anticancer and anti-inflammatory properties. These molecules are produced by enzyme assemblies known as type II polyketide synthases (PKSs), which use domains such as the ketosynthase chain-length factor and acyl carrier protein to produce polyketides with varying lengths, cyclization patterns and oxidation states. In this work, we use a novel bioinformatic workflow to identify biosynthetic gene clusters (BGCs) that code for the core type II PKS enzymes. This method does not rely on annotation and thus was able to unearth previously 'hidden' type II PKS BGCs. This work led us to identify over 6000 putative type II PKS BGCs spanning a diverse set of microbial phyla, nearly double those found in most recent studies. Notably, many of these newly identified BGCs were found in non-actinobacteria, which are relatively underexplored as sources of type II polyketides. Results from this work lay an important foundation for future bioprospecting and engineering efforts that will enable sustainable access to diverse and structurally complex molecules with medicinally relevant properties.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Nucleótidos , Policétidos/metabolismo , Familia de Multigenes
18.
J Phys Chem B ; 127(1): 85-94, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36538691

RESUMEN

The C≡C stretching frequencies of terminal alkynes appear in the "clear" window of vibrational spectra, so they are attractive and increasingly popular as site-specific probes in complicated biological systems like proteins, cells, and tissues. In this work, we collected infrared (IR) absorption and Raman scattering spectra of model compounds, artificial amino acids, and model proteins that contain terminal alkyne groups, and we used our results to draw conclusions about the signal strength and sensitivity to the local environment of both aliphatic and aromatic terminal alkyne C≡C stretching bands. While the IR bands of alkynyl model compounds displayed surprisingly broad solvatochromism, their absorptions were weak enough that alkynes can be ruled out as effective IR probes. The same solvatochromism was observed in model compounds' Raman spectra, and comparisons to published empirical solvent scales (including a linear regression against four meta-aggregated solvent parameters) suggested that the alkyne C≡C stretching frequency mainly reports on local electronic interactions (i.e., short-range electron donor-acceptor interactions) with solvent molecules and neighboring functional groups. The strong solvatochromism observed here for alkyne stretching bands introduces an important consideration for Raman imaging studies based on these signals. Raman signals for alkynes (especially those that are π-conjugated) can be exceptionally strong and should permit alkynyl Raman signals to function as probes at very low concentrations, as compared to other widely used vibrational probe groups like azides and nitriles. We incorporated homopropargyl glycine into a transmembrane helical peptide via peptide synthesis, and we installed p-ethynylphenylalanine into the interior of the Escherichia coli fatty acid acyl carrier protein using a genetic code expansion technique. The Raman spectra from each of these test systems indicate that alkynyl C≡C bands can act as effective and unique probes of their local biomolecular environments. We provide guidance for the best possible future uses of alkynes as solvatochromic Raman probes, and while empirical explanations of the alkyne solvatochromism are offered, open questions about its physical basis are enunciated.


Asunto(s)
Alquinos , Espectrometría Raman , Alquinos/química , Espectrometría Raman/métodos , Solventes
19.
Methods Mol Biol ; 2489: 239-267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35524054

RESUMEN

The enzymes that comprise type II polyketide synthases (PKSs) are powerful biocatalysts that, once well-understood and strategically applied, could enable cost-effective and sustainable access to a range of pharmaceutically relevant molecules. Progress toward this goal hinges on gaining ample access to materials for in vitro characterizations and structural analysis of the components of these synthases. A central component of PKSs is the acyl carrier protein (ACP), which serves as a hub during the biosynthesis of type II polyketides. Herein, we share methods for accessing type II PKS ACPs via heterologous expression in E. coli . We also share how the installation of reactive and site-specific spectroscopic probes can be leveraged to study the conformational dynamics and interactions of type II PKS ACPs.


Asunto(s)
Proteína Transportadora de Acilo , Sintasas Poliquetidas , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Escherichia coli/metabolismo , Sintasas Poliquetidas/genética
20.
Front Chem ; 10: 868240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464232

RESUMEN

Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenases that utilize a cysteine thiolate-ligated heme moiety to perform a wide range of demanding oxidative transformations. Given the oxidative power of the active intermediate formed within P450s during their active cycle, it is remarkable that these enzymes can avoid auto-oxidation and retain the axial cysteine ligand in the deprotonated-and thus highly acidic-thiolate form. While little is known about the process of heme incorporation during P450 folding, there is an overwhelming preference for one heme orientation within the P450 active site. Indeed, very few structures to date contain an alternate heme orientation, of which two are OxyA homologs from glycopeptide antibiotic (GPA) biosynthesis. Given the apparent preference for the unusual heme orientation shown by OxyA enzymes, we investigated the OxyA homolog from kistamicin biosynthesis (OxyAkis), which is an atypical GPA. We determined that OxyAkis is highly sensitive to oxidative damage by peroxide, with both UV and EPR measurements showing rapid bleaching of the heme signal. We determined the structure of OxyAkis and found a mixed population of heme orientations present in this enzyme. Our analysis further revealed the possible modification of the heme moiety, which was only present in samples where the alternate heme orientation was present in the protein. These results suggest that the typical heme orientation in cytochrome P450s can help prevent potential damage to the heme-and hence deactivation of the enzyme-during P450 catalysis. It also suggests that some P450 enzymes involved in GPA biosynthesis may be especially prone to oxidative damage due to the heme orientation found in their active sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA