Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 32(13-14): 929-943, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950492

RESUMEN

While a mutation in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS), much remains to be learned concerning the function of the protein normally encoded at this locus. To elaborate further on functions for C9ORF72, we used quantitative mass spectrometry-based proteomics to identify interacting proteins in motor neurons and found that its long isoform complexes with and stabilizes SMCR8, which further enables interaction with WDR41. To study the organismal and cellular functions for this tripartite complex, we generated Smcr8 loss-of-function mutant mice and found that they developed phenotypes also observed in C9orf72 loss-of-function animals, including autoimmunity. Along with a loss of tolerance for many nervous system autoantigens, we found increased lysosomal exocytosis in Smcr8 mutant macrophages. In addition to elevated surface Lamp1 (lysosome-associated membrane protein 1) expression, we also observed enhanced secretion of lysosomal components-phenotypes that we subsequently observed in C9orf72 loss-of-function macrophages. Overall, our findings demonstrate that C9ORF72 and SMCR8 have interdependent functions in suppressing autoimmunity as well as negatively regulating lysosomal exocytosis-processes of potential importance to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Autoinmunidad/genética , Proteínas Portadoras/metabolismo , Exocitosis/genética , Lisosomas/metabolismo , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica/genética , Humanos , Ganglios Linfáticos/patología , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Macrófagos/patología , Ratones , Ratones Noqueados , Mutación , Isoformas de Proteínas , Estabilidad Proteica , Esplenomegalia/genética
2.
Nature ; 545(7653): 229-233, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28445466

RESUMEN

Human pluripotent stem cells (hPS cells) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with the acquisition of large copy number variants that provide mutated cells with a growth advantage in culture. The nature, extent and functional effects of other acquired genome sequence mutations in cultured hPS cells are not known. Here we sequence the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hES cell) lines, including 26 lines prepared for potential clinical use. We then apply computational strategies for identifying mutations present in a subset of cells in each hES cell line. Although such mosaic mutations were generally rare, we identified five unrelated hES cell lines that carried six mutations in the TP53 gene that encodes the tumour suppressor P53. The TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We found that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that the P53 mutations confer selective advantage. We then mined published RNA sequencing data from 117 hPS cell lines, and observed another nine TP53 mutations, all resulting in coding changes in the DNA-binding domain of P53. In three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from the loss of heterozygosity at the TP53 locus. As the acquisition and expansion of cancer-associated mutations in hPS cells may go unnoticed during most applications, we suggest that careful genetic characterization of hPS cells and their differentiated derivatives be carried out before clinical use.


Asunto(s)
Genes Dominantes/genética , Genes p53 , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Selección Genética , Proteína p53 Supresora de Tumor/genética , Alelos , Recuento de Células , Diferenciación Celular/genética , División Celular/genética , Línea Celular , ADN/metabolismo , Análisis Mutacional de ADN , Exoma/genética , Células Madre Embrionarias Humanas/citología , Humanos , Pérdida de Heterocigocidad/genética , Mosaicismo , Neoplasias/genética , Dominios Proteicos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
3.
Cell Rep Med ; 4(12): 101309, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38086379

RESUMEN

Cutaneous neurofibromas (cNFs) are tumors that develop in more than 99% of individuals with neurofibromatosis type 1 (NF1). They develop in the dermis and can number in the thousands. cNFs can be itchy and painful and negatively impact self-esteem. There is no US Food and Drug Administration (FDA)-approved drug for their treatment. Here, we screen a library of FDA-approved drugs using a cNF cell model derived from human induced pluripotent stem cells (hiPSCs) generated from an NF1 patient. We engineer an NF1 mutation in the second allele to mimic loss of heterozygosity, differentiate the NF1+/- and NF1-/- hiPSCs into Schwann cell precursors (SCPs), and use them to screen a drug library to assess for inhibition of NF1-/- but not NF1+/- cell proliferation. We identify econazole nitrate as being effective against NF1-/- hiPSC-SCPs. Econazole cream selectively induces apoptosis in Nf1-/- murine nerve root neurosphere cells and human cNF xenografts. This study supports further testing of econazole for cNF treatment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neurofibroma , Neurofibromatosis 1 , Neoplasias Cutáneas , Estados Unidos , Humanos , Animales , Ratones , Neurofibromatosis 1/tratamiento farmacológico , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Econazol , Células Madre Pluripotentes Inducidas/metabolismo , Neurofibroma/genética , Neurofibroma/metabolismo , Neurofibroma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Apoptosis/genética
4.
J Comput Aided Mol Des ; 25(7): 621-36, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21604056

RESUMEN

Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM-mM hits and the uniqueness of hits at weak binding affinities for these targets.


Asunto(s)
Descubrimiento de Drogas , Fragmentos de Péptidos/química , Proteínas/química , Sitios de Unión , Técnicas Químicas Combinatorias/métodos , Cristalografía por Rayos X , Industria Farmacéutica , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Biblioteca de Péptidos , Conformación Proteica
5.
Biochem J ; 420(2): 283-94, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19243309

RESUMEN

JNK1 (c-Jun N-terminal kinase 1) plays a crucial role in the regulation of obesity-induced insulin resistance and is implicated in the pathology of Type 2 diabetes. Its partner, JIP1 (JNK-interacting protein 1), serves a scaffolding function that facilitates JNK1 activation by MKK4 [MAPK (mitogen-activated protein kinase) kinase 4] and MKK7 (MAPK kinase 7). For example, reduced insulin resistance and JNK activation are observed in JIP1-deficient mice. On the basis of the in vivo efficacy of a cell-permeable JIP peptide, the JIP-JNK interaction appears to be a potential target for JNK inhibition. The goal of the present study was to identify small-molecule inhibitors that disrupt the JIP-JNK interaction to provide an alternative approach for JNK inhibition to ATP-competitive inhibitors. High-throughput screening was performed by utilizing a fluorescence polarization assay that measured the binding of JNK1 to the JIP peptide. Multiple chemical series were identified, revealing two categories of JIP/JNK inhibitors: 'dual inhibitors' that are ATP competitive and probably inhibit JIP-JNK binding allosterically, and 'JIP-site binders' that block binding through interaction with the JIP site. A series of polychloropyrimidines from the second category was characterized by biochemical methods and explored through medicinal-chemistry efforts. As predicted, these inhibitors also inhibited full-length JIP-JNK binding and were selective against a panel of 34 representative kinases, including ones in the MAPK family. Overall, this work demonstrates that small molecules can inhibit protein-protein interactions in vitro in the MAPK family effectively and provides strategies for similar approaches within other target families.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Compuestos Orgánicos/farmacología , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Modelos Moleculares , Estructura Molecular , Compuestos Orgánicos/química , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Relación Estructura-Actividad
7.
J Biomol Screen ; 10(8): 780-7, 2005 12.
Artículo en Inglés | MEDLINE | ID: mdl-16234348

RESUMEN

An early drug discovery approach focusing on gene families can benefit from strategies that exploit common signaling mechanisms to more effectively identify and characterize novel chemical lead structures. Multiplexing, defined as the screening of multiple targets within the same experiment, is an example of this strategy. Here, the authors describe a technique that allows multiplexing of a common assay type used to study G-protein-coupled receptors: changes in intracellular Ca2+ levels as measured by Molecular Device's fluorometric imaging plate reader (FLIPR). The multiplexed FLIPR assays showed the expected pharmacological properties of single assays, with good reproducibility and Z* factors. The authors used them to screen large compound libraries in 2 multiplexed assay designs. The 1st used a single-cell line expressing 2 different receptors and the 2nd a mixture of 2 cell lines of the same type each expressing distinct receptors. Screening using these multiplexed assays produced significant savings in reagents, time, and human resources and allowed the authors to quickly identify specific and selective hits.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Fluorometría , Receptores Acoplados a Proteínas G/metabolismo , Bioensayo , Calcio/metabolismo , Línea Celular , Receptores Acoplados a Proteínas G/genética
8.
PLoS One ; 6(6): e20692, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21673956

RESUMEN

The availability of human neuronal progenitors (hNPs) in high purity would greatly facilitate neuronal drug discovery and developmental studies, as well as cell replacement strategies for neurodegenerative diseases and conditions, such as spinal cord injury, stroke, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Here we describe for the first time a method for producing hNPs in large quantity and high purity from human embryonic stem cells (hESCs) in feeder-free conditions, without the use of exogenous noggin, sonic hedgehog or analogs, rendering the process clinically compliant. The resulting population displays characteristic neuronal-specific markers. When allowed to spontaneously differentiate into neuronal subtypes in vitro, cholinergic, serotonergic, dopaminergic and/or noradrenergic, and medium spiny striatal neurons were observed. When transplanted into the injured spinal cord the hNPs survived, integrated into host tissue, and matured into a variety of neuronal subtypes. Our method of deriving neuronal progenitors from hESCs renders the process amenable to therapeutic and commercial use.


Asunto(s)
Técnicas Citológicas/métodos , Células Madre Embrionarias/citología , Neuronas/citología , Animales , Diferenciación Celular , Medio de Cultivo Libre de Suero , Femenino , Humanos , Ratas
9.
J Biomol Screen ; 14(7): 838-44, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19641220

RESUMEN

Lipid kinases are central players in lipid signaling pathways involved in inflammation, tumorigenesis, and metabolic syndrome. A number of these kinase targets have proven difficult to investigate in higher throughput cell-free assay systems. This challenge is partially due to specific substrate interaction requirements for several of the lipid kinase family members and the resulting incompatibility of these substrates with most established, homogeneous assay formats. Traditional, cell-free in vitro investigational methods for members of the lipid kinase family typically involve substrate incorporation of [gamma-32P] and resolution of signal by thin-layer chromatography (TLC) and autoradiograph densitometry. This approach, although highly sensitive, does not lend itself to high-throughput testing of large numbers of small molecules (100 s to 1 MM+). The authors present the development and implementation of a fully synthetic, liposome-based assay for assessing in vitro activity of phosphatidylinositol-5-phosphate-4-kinase isoforms (PIP4KIIbeta and alpha) in 2 commonly used homogeneous technologies. They have validated these assays through compound testing in both traditional TLC and radioactive filterplate approaches as well as binding validation using isothermic calorimetry. A directed library representing known kinase pharmacophores was screened against type IIbeta phosphatidylinositol-phosphate kinase (PIPK) to identify small-molecule inhibitors. This assay system can be applied to other types and isoforms of PIPKs as well as a variety of other lipid kinase targets.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Metabolismo de los Lípidos , Liposomas/metabolismo , Fosfotransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Calorimetría , Sistema Libre de Células , Cromatografía en Capa Delgada , Cristalografía por Rayos X , Densitometría , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Concentración 50 Inhibidora , Cinética , Metabolismo de los Lípidos/efectos de los fármacos , Radioisótopos de Fósforo , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Reproducibilidad de los Resultados , Especificidad por Sustrato/efectos de los fármacos
10.
Chem Biol Drug Des ; 73(2): 179-88, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19207420

RESUMEN

Aberrant activation of the phosphoinositide 3-kinase pathway because of genetic mutations of essential signalling proteins has been associated with human diseases including cancer and diabetes. The pivotal role of 3-phosphoinositide-dependent kinase-1 in the PI3K signalling cascade has made it an attractive target for therapeutic intervention. The N-terminal lobe of the 3-phosphoinositide-dependent kinase-1 catalytic domain contains a docking site which recognizes the non-catalytic C-terminal hydrophobic motifs of certain substrate kinases. The binding of substrate in this so-called PDK1 Interacting Fragment pocket allows interaction with 3-phosphoinositide-dependent kinase-1 and enhanced phosphorylation of downstream kinases. NMR spectroscopy was used to a screen 3-phosphoinositide-dependent kinase-1 domain construct against a library of chemically diverse fragments in order to identify small, ligand-efficient fragments that might interact at either the ATP site or the allosteric PDK1 Interacting Fragment pocket. While majority of the fragment hits were determined to be ATP-site binders, several fragments appeared to interact with the PDK1 Interacting Fragment pocket. Ligand-induced changes in 1H-15N TROSY spectra acquired using uniformly 15N-enriched PDK1 provided evidence to distinguish ATP-site from PDK1 Interacting Fragment-site binding. Caliper assay data and 19F NMR assay data on the PDK1 Interacting Fragment pocket fragments and structurally related compounds identified them as potential allosteric activators of PDK1 function.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas Serina-Treonina Quinasas/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Sitio Alostérico , Dominio Catalítico , Simulación por Computador , Humanos , Hidrógeno/química , Ligandos , Nitrógeno/química , Conformación Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína
11.
Cancer Res ; 68(18): 7466-74, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794134

RESUMEN

In response to DNA damage, the ATM protein kinase activates signal transduction pathways essential for coordinating cell cycle progression with DNA repair. In the human disease ataxia-telangiectasia, mutation of the ATM gene results in multiple cellular defects, including enhanced sensitivity to ionizing radiation (IR). This phenotype highlights ATM as a potential target for novel inhibitors that could be used to enhance tumor cell sensitivity to radiotherapy. A targeted compound library was screened for potential inhibitors of the ATM kinase, and CP466722 was identified. The compound is nontoxic and does not inhibit phosphatidylinositol 3-kinase (PI3K) or PI3K-like protein kinase family members in cells. CP466722 inhibited cellular ATM-dependent phosphorylation events and disruption of ATM function resulted in characteristic cell cycle checkpoint defects. Inhibition of cellular ATM kinase activity was rapidly and completely reversed by removing CP466722. Interestingly, clonogenic survival assays showed that transient inhibition of ATM is sufficient to sensitize cells to IR and suggests that therapeutic radiosensitization may only require ATM inhibition for short periods of time. The ability of CP466722 to rapidly and reversibly regulate ATM activity provides a new tool to ask questions about ATM function that could not easily be addressed using genetic models or RNA interference technologies.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Daño del ADN , ADN de Neoplasias/efectos de la radiación , Proteínas de Unión al ADN/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Tolerancia a Radiación/fisiología , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/efectos de los fármacos , Células HeLa , Humanos , Rayos Infrarrojos , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Quinazolinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Transducción de Señal , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA