Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Psychiatry ; 28(4): 1527-1544, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36717740

RESUMEN

The RhoGEF TRIO is known to play a major role in neuronal development by controlling actin cytoskeleton remodeling, primarily through the activation of the RAC1 GTPase. Numerous de novo mutations in the TRIO gene have been identified in individuals with neurodevelopmental disorders (NDDs). We have previously established the first phenotype/genotype correlation in TRIO-associated diseases, with striking correlation between the clinical features of the individuals and the opposite modulation of RAC1 activity by TRIO variants targeting different domains. The mutations hyperactivating RAC1 are of particular interest, as they are recurrently found in patients and are associated with a severe form of NDD and macrocephaly, indicating their importance in the etiology of the disease. Yet, it remains unknown how these pathogenic TRIO variants disrupt TRIO activity at a molecular level and how they affect neurodevelopmental processes such as axon outgrowth or guidance. Here we report an additional cohort of individuals carrying a pathogenic TRIO variant that reinforces our initial phenotype/genotype correlation. More importantly, by performing conformation predictions coupled to biochemical validation, we propose a model whereby TRIO is inhibited by an intramolecular fold and NDD-associated variants relieve this inhibition, leading to RAC1 hyperactivation. Moreover, we show that in cultured primary neurons and in the zebrafish developmental model, these gain-of-function variants differentially affect axon outgrowth and branching in vitro and in vivo, as compared to loss-of-function TRIO variants. In summary, by combining clinical, molecular, cellular and in vivo data, we provide compelling new evidence for the pathogenicity of novel genetic variants targeting the TRIO gene in NDDs. We report a novel mechanism whereby the fine-tuned regulation of TRIO activity is critical for proper neuronal development and is disrupted by pathogenic mutations.


Asunto(s)
Orientación del Axón , Trastornos del Neurodesarrollo , Animales , Trastornos del Neurodesarrollo/genética , Neuronas , Factores de Intercambio de Guanina Nucleótido Rho , Pez Cebra , Humanos
2.
Am J Med Genet A ; 191(7): 1722-1740, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36987741

RESUMEN

The TRIO gene encodes a rho guanine exchange factor, the function of which is to exchange GDP to GTP, and hence to activate Rho GTPases, and has been described to impact neurodevelopment. Specific genotype-to-phenotype correlations have been established previously describing striking differentiating features seen in variants located in specific domains of the TRIO gene that are associated with opposite effects on RAC1 activity. Currently, 32 cases with a TRIO gene alteration have been published in the medical literature. Here, we report an additional 25, previously unreported individuals who possess heterozygous TRIO variants and we review the literature. In addition, functional studies were performed on the c.4394A > G (N1465S) and c.6244-2A > G TRIO variants to provide evidence for their pathogenicity. Variants reported by the current study include missense variants, truncating nonsense variants, and an intragenic deletion. Clinical features were previously described and included developmental delay, learning difficulties, microcephaly, macrocephaly, seizures, behavioral issues (aggression, stereotypies), skeletal problems including short, tapering fingers and scoliosis, dental problems (overcrowding/delayed eruption), and variable facial features. Here, we report clinical features that have not been described previously, including specific structural brain malformations such as abnormalities of the corpus callosum and ventriculomegaly, additional psychological and dental issues along with a more recognizable facial gestalt linked to the specific domains of the TRIO gene and the effect of the variant upon the function of the encoded protein. This current study further strengthens the genotype-to-phenotype correlation that was previously established and extends the range of phenotypes to include structural brain abnormalities, additional skeletal, dental, and psychiatric issues.


Asunto(s)
Microcefalia , Malformaciones del Sistema Nervioso , Humanos , Fenotipo , Mutación , Mutación Missense , Microcefalia/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887345

RESUMEN

JARID2 (Jumonji, AT Rich Interactive Domain 2) pathogenic variants cause a neurodevelopmental syndrome, that is characterized by developmental delay, cognitive impairment, hypotonia, autistic features, behavior abnormalities and dysmorphic facial features. JARID2 encodes a transcriptional repressor protein that regulates the activity of various histone methyltransferase complexes. However, the molecular etiology is not fully understood, and JARID2-neurodevelopmental syndrome may vary in its typical clinical phenotype. In addition, the detection of variants of uncertain significance (VUSs) often results in a delay of final diagnosis which could hamper the appropriate care. In this study we aim to detect a specific and sensitive DNA methylation signature for JARID2-neurodevelopmental syndrome. Peripheral blood DNA methylation profiles from 56 control subjects, 8 patients with (likely) pathogenic JARID2 variants and 3 patients with JARID2 VUSs were analyzed. DNA methylation analysis indicated a clear and robust separation between patients with (likely) pathogenic variants and controls. A binary model capable of classifying patients with the JARID2-neurodevelopmental syndrome was constructed on the basis of the identified episignature. Patients carrying VUSs clustered with the control group. We identified a distinct DNA methylation signature associated with JARID2-neurodevelopmental syndrome, establishing its utility as a biomarker for this syndrome and expanding the EpiSign diagnostic test.


Asunto(s)
Metilación de ADN , Complejo Represivo Polycomb 2 , Humanos , Motivos de Nucleótidos , Fenotipo , Complejo Represivo Polycomb 2/genética , Procesamiento Proteico-Postraduccional , Síndrome
4.
Genet Med ; 23(2): 374-383, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33077894

RESUMEN

PURPOSE: JARID2, located on chromosome 6p22.3, is a regulator of histone methyltransferase complexes that is expressed in human neurons. So far, 13 individuals sharing clinical features including intellectual disability (ID) were reported with de novo heterozygous deletions in 6p22-p24 encompassing the full length JARID2 gene (OMIM 601594). However, all published individuals to date have a deletion of at least one other adjoining gene, making it difficult to determine if JARID2 is the critical gene responsible for the shared features. We aim to confirm JARID2 as a human disease gene and further elucidate the associated clinical phenotype. METHODS: Chromosome microarray analysis, exome sequencing, and an online matching platform (GeneMatcher) were used to identify individuals with single-nucleotide variants or deletions involving JARID2. RESULTS: We report 16 individuals in 15 families with a deletion or single-nucleotide variant in JARID2. Several of these variants are likely to result in haploinsufficiency due to nonsense-mediated messenger RNA (mRNA) decay. All individuals have developmental delay and/or ID and share some overlapping clinical characteristics such as facial features with those who have larger deletions involving JARID2. CONCLUSION: We report that JARID2 haploinsufficiency leads to a clinically distinct neurodevelopmental syndrome, thus establishing gene-disease validity for the purpose of diagnostic reporting.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Haploinsuficiencia/genética , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Complejo Represivo Polycomb 2/genética , Síndrome , Secuenciación del Exoma
5.
Am J Med Genet A ; 173(9): 2467-2471, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28742278

RESUMEN

We report on a girl diagnosed prenatally with agenesis of the corpus callosum (ACC) on fetal ultrasound and MRI. On postnatal follow-up she was noted to have developmental delay, facial dysmorphism, autism spectrum disorder, and posterior polymorphous corneal dystrophy (PPD). Array-comparative genomic hybridization analysis (Array-CGH) showed a 2.05 Mb de novo interstitial deletion at 10p11.23p11.22. The deleted region overlaps 1 OMIM Morbid Map gene, ZEB1 (the zinc finger E-box binding homeobox transcription factor 1), previously associated with posterior polymorphous corneal dystrophy type 3 (PPCD3). To our best knowledge this is the first reported case with a deletion of the ZEB1 gene in an individual with ACC and PPD, showing that the haploinsufficiency of the ZEB1 is likely the cause of our patient's phenotype.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Trastorno del Espectro Autista/genética , Distrofias Hereditarias de la Córnea/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Hibridación Genómica Comparativa , Distrofias Hereditarias de la Córnea/diagnóstico por imagen , Distrofias Hereditarias de la Córnea/fisiopatología , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Eliminación de Secuencia/genética , Ultrasonografía Prenatal
6.
Am J Med Genet A ; 173(3): 699-705, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28211974

RESUMEN

Dilated cardiomyopathy (DCM) is characterized by dilation and impaired contraction of the left ventricle or both ventricles. Among hereditary DCM, the genetic causes are heterogeneous, and include mutations encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. We report three severely affected males, in a four-generation pedigree, with DCM phenotype who underwent cardiac transplant. Cardiomegaly with marked biventricular dilation and fibrosis were noticeable histopathological findings. The affected males had tested negative on a 46-gene pancardiomyopathy panel. Whole Exome Sequencing (WES) was performed to reveal mutation in the gene responsible in generation of DCM phenotypes. The 1-bp (Chr10:121435979delC; c.913delC) novel heterozygous deletion in exon 4 of BAG3, was identified in three affected males, resulted in frame-shift and a premature termination codon (p.Met306-Stop) producing a truncated BAG3 protein lacking functionally important PXXP and BAG domains. WES data were further utilized to map 10 SNP markers around the discovered mutation to generate shared disease haplotype in all affected individuals encompassing 11 Mb on 10q25.3-26.2 harboring BAG3. Finally genotypes were inferred for the unavailable/deceased individuals in the pedigrees. Here we propose that Chr10:121435979delC in BAG3 is a causal mutation in these subjects. Our and earlier studies indicate that BAG3 mutations are associated with DCM phenotypes. BAG3 should be added to cardiomyopathy gene panels for screening of DCM patients, and patients previously considered gene elusive should undergo sequencing of the BAG3 gene. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Eliminación de Secuencia , Adulto , Anciano , Alelos , Sustitución de Aminoácidos , Cardiomiopatía Dilatada/cirugía , Análisis Mutacional de ADN , Familia , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Pruebas de Función Cardíaca , Trasplante de Corazón , Humanos , Masculino , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple
7.
Am J Med Genet A ; 167A(11): 2544-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26097063

RESUMEN

Craniosynostosis is a clinically and genetically heterogeneous condition. Knowledge of the specific genetic diagnosis in patients presenting with this condition is important for surgical and medical management. The most common single gene causes of syndromic craniosynostosis are mutations in FGFR1, FGFR2, FGFR3, TWIST1, and EFNB1. Recently, a new single gene cause of craniosynostosis was published, together with phenotype data that highlight the clinical importance of making this specific molecular diagnosis. Phenotypic features of "ERF-related craniosynostosis" include sagittal or multiple-suture synostosis, Chiari malformation, and language delay. In order to determine the contribution of ERF mutations to genetically undiagnosed patients with craniosynostosis, we sequenced the coding regions of ERF in 40 patients with multi-suture or sagittal suture synostosis. We identified heterozygous ERF mutations in two individuals (5%). One mutation positive individual had pansynostosis, while the second had bilateral coronal and metopic synostosis. Both presented in infancy or childhood (age 3 months, and 6 years 9 months, respectively). One had CNS abnormalities including Chiari I malformation. Dysmorphic features included hypertelorism, proptosis, depressed nasal bridge, and retrognathia, in keeping with previously reported cases. The individuals did not require repeated cranial surgeries. ERF-related craniosynostosis should be suspected in patients presenting with multiple suture or sagittal synostosis.


Asunto(s)
Suturas Craneales/patología , Craneosinostosis/genética , Mutación/genética , Proteínas Represoras/genética , Secuencia de Bases , Niño , Preescolar , Estudios de Cohortes , Suturas Craneales/diagnóstico por imagen , Craneosinostosis/diagnóstico por imagen , Heterocigoto , Humanos , Datos de Secuencia Molecular , Fenotipo , Síndrome , Tomografía Computarizada por Rayos X
8.
NPJ Genom Med ; 12016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28567303

RESUMEN

The standard of care for first-tier clinical investigation of the etiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion-deletions (indels) and single nucleotide variant (SNV) mutations. Whole genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilized WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a 4-fold increase in diagnostic rate over CMA (8%) (p-value = 1.42e-05) alone and >2-fold increase in CMA plus targeted gene sequencing (13%) (p-value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harboring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counseling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.

9.
Clin Biochem ; 45(15): 1152-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22732525

RESUMEN

BACKGROUND/OBJECTIVES: The Ontario Prenatal Screening Program (OPSP) follows internationally recognized standardized procedures for laboratories and genetics clinics. However, it has been found that some procedures are subject to interpretation, so the current procedures are designed to facilitate a unified approach in the interpretation of literature recommendations. In Ontario, the OPSP offers multiple screening modalities with integrated prenatal screening (including both first and second trimester markers) being the most commonly chosen option. Other screening modalities include first trimester screening, second trimester quad screening, serum integrated screening, and NT-Quad. METHODS: The standardization was based on a literature review and on current practices in Ontario. RESULTS/DISCUSSION: The main finding of the review was a paucity of published data relating to the procedures and the decision-making processes involved in prenatal screening. The purpose of this publication is to provide the most up-to-date and pertinent information for clinical laboratory professionals involved with prenatal screening for Down syndrome, trisomy 18 and open neural tube defects.


Asunto(s)
Aneuploidia , Síndrome de Down/diagnóstico , Defectos del Tubo Neural/diagnóstico por imagen , Diagnóstico Prenatal/normas , Demografía , Síndrome de Down/sangre , Femenino , Registros de Salud Personal , Humanos , Ontario , Embarazo , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA