Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(12): e2120933119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290127

RESUMEN

The formation and differentiation of planetary bodies are dated using radioactive decay systems, including the short-lived 146Sm-142Nd (T½ = 103 or 68 Ma) and long-lived 147Sm-143Nd (T½ = 106 Ga) radiogenic pairs that provide relative and absolute ages, respectively. However, the initial abundance and half-life of the extinct radioactive isotope 146Sm are still debated, weakening the interpretation of 146Sm-142Nd systematics obtained for early planetary processes. Here, we apply the short-lived 26Al-26Mg, 146Sm-142Nd, and long-lived 147Sm-143Sm chronometers to the oldest known andesitic meteorite, Erg Chech 002 (EC 002), to constrain the Solar System initial abundance of 146Sm. The 26Al-26Mg mineral isochron of EC 002 provides a tightly constrained initial δ26Mg* of −0.009 ± 0.005 ‰ and (26Al/27Al)0 of (8.89 ± 0.09) × 10−6. This initial abundance of 26Al is the highest measured so far in an achondrite and corresponds to a crystallization age of 1.80 ± 0.01 Myr after Solar System formation. The 146Sm-142Nd mineral isochron returns an initial 146Sm/144Sm ratio of 0.00830 ± 0.00032. By combining the Al-Mg crystallization age and initial 146Sm/144Sm ratio of EC 002 with values for refractory inclusions, achondrites, and lunar samples, the best-fit half-life for 146Sm is 102 ± 9 Ma, corresponding to the physically measured value of 103 ± 5 Myr, rather than the latest and lower revised value of 68 ± 7 Ma. Using a half-life of 103 Ma for 146Sm, the 146Sm/144Sm abundance of EC 002 translates into an initial Solar System 146Sm/144Sm ratio of 0.00840 ± 0.00032, which represents the most reliable and precise estimate to date and makes EC 002 an ideal anchor for the 146Sm-142Nd clock.

2.
Proc Natl Acad Sci U S A ; 119(51): e2214395119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508675

RESUMEN

Remote sensing data revealed that the presence of water (OH/H2O) on the Moon is latitude-dependent and probably time-of-day variation, suggesting a solar wind (SW)-originated water with a high degassing loss rate on the lunar surface. However, it is unknown whether or not the SW-derived water in lunar soil grains can be preserved beneath the surface. We report ion microprobe analyses of hydrogen abundances, and deuterium/hydrogen ratios of the lunar soil grains returned by the Chang'e-5 mission from a higher latitude than previous missions. Most of the grain rims (topmost ~100 nm) show high abundances of hydrogen (1,116 to 2,516 ppm) with extremely low δD values (-908 to -992‰), implying nearly exclusively a SW origin. The hydrogen-content depth distribution in the grain rims is phase-dependent, either bell-shaped for glass or monotonic decrease for mineral grains. This reveals the dynamic equilibrium between implantation and outgassing of SW-hydrogen in soil grains on the lunar surface. Heating experiments on a subset of the grains further demonstrate that the SW-implanted hydrogen could be preserved after burial. By comparing with the Apollo data, both observations and simulations provide constraints on the governing role of temperature (latitude) on hydrogen implantation/migration in lunar soils. We predict an even higher abundance of hydrogen in the grain rims in the lunar polar regions (average ~9,500 ppm), which corresponds to an estimation of the bulk water content of ~560 ppm in the polar soils assuming the same grain size distribution as Apollo soils, consistent with the orbit remote sensing result.


Asunto(s)
Suelo , Agua , Luna , Viento , Hidrógeno
3.
Anal Chem ; 96(1): 170-178, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38155534

RESUMEN

Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.e., microenergy-dispersive X-ray fluorescence (micro-XRF) and Raman micro-spectroscopy. The applicability of the developed method is tested by the quantitative analysis of cation composition in micrometer-sized carbonate grains on the surfaces of intact particles sampled directly from the asteroid Ryugu. The first step of micro-XRF imaging enabled a quick search for the sparsely scattered and micrometer-sized carbonates by the codistributions of Ca2+ and Mn2+ on the Mg2+- and Fe2+-rich phyllosilicate matrix. The following step of Raman micro-spectroscopy probed the carbonate grains and analyzed their cation composition (Ca2+, Mg2+, and Fe2+ + Mn2+) in a matrix effect-free manner via the systematic Raman shifts of the lattice modes. The carbonates were basically assigned to ferroan dolomite bearing a considerable amount of Fe2+ + Mn2+ at around 10 atom %. These results are in good accordance with the assignments reported by scanning electron microscopy-energy-dispersive X-ray spectroscopy, where the thin-sectioned and surface-polished Ryugu particles were applicable. The proposed method requires neither sectioning nor surface polishing; hence, it can be applied to the remote sensing apparatus on spacecrafts and planetary rovers. Furthermore, the non-invasive and matrix effect-free characterization will provide a reliable analytical tool for quantitative analysis of the elemental distribution on the samples with surface roughness and chemical heterogeneity at a micrometer scale, such as art paintings, traditional crafts with decorated shapes, as well as sands and rocks with complex morphologies in nature.

4.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34949641

RESUMEN

Enrichment or depletion ranging from -40 to +100% in the major isotopes 16O and 24Mg were observed experimentally in solids condensed from carbonaceous plasma composed of CO2/MgCl2/Pentanol or N2O/Pentanol for O and MgCl2/Pentanol for Mg. In NanoSims imaging, isotope effects appear as micrometer-size hotspots embedded in a carbonaceous matrix showing no isotope fractionation. For Mg, these hotspots are localized in carbonaceous grains, which show positive and negative isotopic effects so that the whole grain has a standard isotope composition. For O, no specific structure was observed at hotspot locations. These results suggest that MIF (mass-independent fractionation) effects can be induced by chemical reactions taking place in plasma. The close agreement between the slopes of the linear correlations observed between δ25Mg versus δ26Mg and between δ17O versus δ18O and the slopes calculated using the empirical MIF factor η discovered in ozone [M. H. Thiemens, J. E. Heidenreich, III. Science 219, 1073-1075; C. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky. Phys. Chem. Chem. Phys 3, 4718-4721] attests to the ubiquity of this process. Although the chemical reactants used in the present experiments cannot be directly transposed to the protosolar nebula, a similar MIF mechanism is proposed for oxygen isotopes: at high temperature, at the surface of grains, a mass-independent isotope exchange could have taken place between condensing oxides and oxygen atoms originated form the dissociation of CO or H2O gas.

5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836612

RESUMEN

The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced during the cooling of a magma ocean and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg Chech 002 (EC 002) originates from one such primitive igneous crust and has an andesite bulk composition. It derives from the partial melting of a noncarbonaceous chondritic reservoir, with no depletion in alkalis relative to the Sun's photosphere and at a high degree of melting of around 25%. Moreover, EC 002 is, to date, the oldest known piece of an igneous crust with a 26Al-26Mg crystallization age of 4,565.0 million years (My). Partial melting took place at 1,220 °C up to several hundred kyr before, implying an accretion of the EC 002 parent body ca. 4,566 My ago. Protoplanets covered by andesitic crusts were probably frequent. However, no asteroid shares the spectral features of EC 002, indicating that almost all of these bodies have disappeared, either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.

6.
Proc Natl Acad Sci U S A ; 116(47): 23461-23466, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685614

RESUMEN

Chondritic meteorites are composed of primitive components formed during the evolution of the Solar protoplanetary disk. The oldest of these components formed by condensation, yet little is known about their formation mechanism because of secondary heating processes that erased their primordial signature. Amoeboid Olivine Aggregates (AOAs) have never been melted and underwent minimal thermal annealing, implying they might have retained the conditions under which they condensed. We performed a multiisotope (O, Si, Mg) characterization of AOAs to constrain the conditions under which they condensed and the information they bear on the structure and evolution of the Solar protoplanetary disk. High-precision silicon isotopic measurements of 7 AOAs from weakly metamorphosed carbonaceous chondrites show large, mass-dependent, light Si isotope enrichments (-9‰ < δ30Si < -1‰). Based on physical modeling of condensation within the protoplanetary disk, we attribute these isotopic compositions to the rapid condensation of AOAs over timescales of days to weeks. The same AOAs show slightly positive δ25Mg that suggest that Mg isotopic homogenization occurred during thermal annealing without affecting Si isotopes. Such short condensation times for AOAs are inconsistent with disk transport timescales, indicating that AOAs, and likely other high-temperature condensates, formed during brief localized high-temperature events.

7.
Proc Natl Acad Sci U S A ; 116(4): 1132-1135, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30606798

RESUMEN

Indirect evidence for the presence of a felsic continental crust, such as the elevated 49Ti/47Ti ratios in Archean shales, has been used to argue for ongoing subduction at that time and therefore plate tectonics. However, rocks of intermediate to felsic compositions can be produced in both plume and island arc settings. The fact that Ti behaves differently during magma differentiation in these two geological settings might result in contrasting isotopic signatures. Here, we demonstrate that, at a given SiO2 content, evolved plume rocks (tholeiitic) are more isotopically fractionated in Ti than differentiated island arc rocks (mainly calc-alkaline). We also show that the erosion of crustal rocks from whether plumes (mafic in average) or island arcs (intermediate in average) can all produce sediments having quite constant 49Ti/47Ti ratios being 0.1-0.3 per mille heavier than that of the mantle. This suggests that Ti isotopes are not a direct tracer for the SiO2 contents of crustal rocks. Ti isotopes in crustal sediments are still a potential proxy to identify the geodynamical settings for the formation of the crust but only if combined with additional SiO2 information.

8.
Proc Natl Acad Sci U S A ; 115(34): 8535-8540, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082400

RESUMEN

Dust grains of organic matter were the main reservoir of C and N in the forming Solar System and are thus considered to be an essential ingredient for the emergence of life. However, the physical environment and the chemical mechanisms at the origin of these organic grains are still highly debated. In this study, we report high-precision triple oxygen isotope composition for insoluble organic matter isolated from three emblematic carbonaceous chondrites, Orgueil, Murchison, and Cold Bokkeveld. These results suggest that the O isotope composition of carbonaceous chondrite insoluble organic matter falls on a slope 1 correlation line in the triple oxygen isotope diagram. The lack of detectable mass-dependent O isotopic fractionation, indicated by the slope 1 line, suggests that the bulk of carbonaceous chondrite organics did not form on asteroidal parent bodies during low-temperature hydrothermal events. On the other hand, these O isotope data, together with the H and N isotope characteristics of insoluble organic matter, may indicate that parent bodies of different carbonaceous chondrite types largely accreted organics formed locally in the protosolar nebula, possibly by photochemical dissociation of C-rich precursors.

9.
Proc Natl Acad Sci U S A ; 112(5): 1298-303, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605942

RESUMEN

Chondritic meteorites are made of primitive components that record the first steps of formation of solids in our Solar System. Chondrules are the major component of chondrites, yet little is known about their formation mechanisms and history within the solar protoplanetary disk (SPD). We use the reconstructed concentrations of short-lived (26)Al in chondrules to constrain the timing of formation of their precursors in the SPD. High-precision bulk magnesium isotopic measurements of 14 chondrules from the Allende chondrite define a (26)Al isochron with (26)Al/(27)Al = 1.2(±0.2) × 10(-5) for this subset of Allende chondrules. This can be considered to be the minimum bulk chondrule (26)Al isochron because all chondrules analyzed so far with high precision (∼50 chondrules from CV and ordinary chondrites) have an inferred minimum bulk initial ((26)Al/(27)Al) ≥ 1.2 × 10(-5). In addition, mineral (26)Al isochrons determined on the same chondrules show that their formation (i.e., fusion of their precursors by energetic events) took place from 0 Myr to ∼2 Myr after the formation of their precursors, thus showing in some cases a clear decoupling in time between the two events. The finding of a minimum bulk chondrule (26)Al isochron is used to constrain the astrophysical settings for chondrule formation. Either the temperature of the condensation zone dropped below the condensation temperature of chondrule precursors at ∼1.5 My after the start of the Solar System or the transport of precursors from the condensation zone to potential storage sites stopped after 1.5 My, possibly due to a drop in the disk accretion rate.

10.
Proc Natl Acad Sci U S A ; 111(35): 12689-92, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136108

RESUMEN

Volcanism is a substantial process during crustal growth on planetary bodies and well documented to have occurred in the early Solar System from the recognition of numerous basaltic meteorites. Considering the ureilite parent body (UPB), the compositions of magmas that formed a potential UPB crust and were complementary to the ultramafic ureilite mantle rocks are poorly constrained. Among the Almahata Sitta meteorites, a unique trachyandesite lava (with an oxygen isotope composition identical to that of common ureilites) documents the presence of volatile- and SiO2-rich magmas on the UPB. The magma was extracted at low degrees of disequilibrium partial melting of the UPB mantle. This trachyandesite extends the range of known ancient volcanic, crust-forming rocks and documents that volcanic rocks, similar in composition to trachyandesites on Earth, also formed on small planetary bodies ∼ 4.56 billion years ago. It also extends the volcanic activity on the UPB by ∼ 1 million years (Ma) and thus constrains the time of disruption of the body to later than 6.5 Ma after the formation of Ca-Al-rich inclusions.

11.
Proc Natl Acad Sci U S A ; 110(42): 16736-41, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082125

RESUMEN

The oxygen content of Earth's atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth's oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth's oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest-lived positive δ(13)C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.


Asunto(s)
Atmósfera , Modelos Teóricos , Oxígeno , Fósiles , Gabón , Oxidación-Reducción
12.
Rapid Commun Mass Spectrom ; 33(20): 1589-1597, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31237970

RESUMEN

RATIONALE: High-precision determination of silicon isotopes can be achieved by in situ multi-collector secondary ion mass spectrometry (MS-SIMS). The accuracy of the analyses is, however, sensitive to ion yields and instrumental mass fractionations (IMFs) induced by the analytical procedure. These effects vary from one instrument to another, with the analytical settings, and with the composition and nature of the sample. Because ion yields and IMF effects are not predictable and rely on empirical calibrations, high-accuracy analyses require suitable sets of standards. METHODS: Here, we document calibrations of ion yields and matrix effects in a set of 23 olivine standards and 3 low-Ca pyroxene for silicon isotopic measurements in both polarities using Cameca IMS 1270 E7 and IMS 1280 HR2 ion probes set with the cesium (Cs) or radiofrequency (RF) source. RESULTS: Silicon ion yields show (i) strong variations with the chemical composition, and (ii) an opposite behavior between the secondary positive and negative polarities. The magnitude of IMF along the fayalite-forsterite (olivine) series shows a complex behavior, increasing overall by ≈7‰ (secondary positive) and ≈15‰ (secondary negative) with increasing olivine Mg#. A drastic change in olivine IMF occurs at Mg# ≈ 70 in both polarities. The magnitude of IMF for low-Ca pyroxene from Mg# = 70-100 is almost constant in both polarities, i.e. ≈0.1‰ in secondary positive and ≈0.15‰ in secondary negative. The analytical uncertainties on individual analyses were ± 0.05-0.15‰ (2 S.E.) with both sources, and the external errors for each standard material were ≈ ±0.05-0.5‰ (2 S.E.) with the Cs source and ≈ ±0.03-0.15‰ (2 S.E.) with the RF source. CONCLUSIONS: The IMF effect of Si isotopes in silicates shows complex behaviors that vary with the chemistry and the settings of the instrument. We developed a suitable set of standards in order to perform high-accuracy in situ measurements of Si isotopes in olivine and low-Ca pyroxene characterized by varying chemical compositions by MC-SIMS.

13.
Science ; 379(6634): eabn7850, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35679354

RESUMEN

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37° ± 10°C, about [Formula: see text] million (statistical) or [Formula: see text] million (systematic) years after the formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles that of the Sun's photosphere than other natural samples do.

14.
Sci Adv ; 9(28): eadh1003, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450600

RESUMEN

Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration. The 5 to 10 times higher abundances of presolar SiC (~235 ppm), N-rich organic matter, organics with N isotopic anomalies (1.2%), and organics with C isotopic anomalies (0.2%) in the primitive clasts compared to bulk Ryugu suggest that the clasts formed in a unique part of the protoplanetary disk enriched in presolar materials. These clasts likely represent previously unsampled outer solar system material that accreted onto Ryugu after aqueous alteration ceased, consistent with Ryugu's rubble pile origin.


Asunto(s)
Carbono , Meteoroides , Carbono/análisis , Sistema Solar , Silicatos
15.
Sci Adv ; 9(45): eadi7048, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939187

RESUMEN

Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform. This variation in Cr isotope ratios is most likely due to physicochemical fractionation between 54Cr-rich presolar nanoparticles and Cr-bearing secondary minerals at the millimeter-scale in the bulk samples, likely due to extensive aqueous alteration in their parent bodies that occurred [Formula: see text] after Solar System birth. In contrast, Ti isotopes were marginally affected by this process. Our results show that isotopic heterogeneities in asteroids are not all nebular or accretionary in nature but can also reflect element redistribution by water.

16.
Nature ; 443(7114): 969-72, 2006 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17066030

RESUMEN

The terrestrial sediment record indicates that the Earth's climate varied drastically in the Precambrian era (before 550 million years ago), ranging from surface temperatures similar to or higher than today's to global glaciation events. The most continuous record of sea surface temperatures of that time has been derived from variations in oxygen isotope ratios of cherts (siliceous sediments), but the long-term cooling of the oceans inferred from those data has been questioned because the oxygen isotope signature could have been reset through the exchange with hydrothermal fluids after deposition of the sediments. Here we show that the silicon isotopic composition of cherts more than 550 million years old shows systematic variations with age that support the earlier conclusion of long-term ocean cooling and exclude post-depositional exchange as the main source of the isotopic variations. In agreement with other lines of evidence, a model of the silicon cycle in the Precambrian era shows that the observed silicon isotope variations imply seawater temperature changes from about 70 degrees C 3,500 million years ago to about 20 degrees C 800 million years ago.


Asunto(s)
Sedimentos Geológicos/química , Silicio/análisis , Temperatura , Animales , Historia Antigua , Isótopos , Océanos y Mares , Isótopos de Oxígeno , Agua de Mar/química , Factores de Tiempo
17.
Proc Natl Acad Sci U S A ; 106(17): 6904-9, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19366660

RESUMEN

Micrometeorites with diameter approximately 100-200 microm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission.

18.
Sci Adv ; 8(50): eade2067, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525483

RESUMEN

The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16O-rich (associated with refractory inclusions) and 16O-poor (associated with chondrules). Both the 16O-rich and 16O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16O-rich to 16O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.

19.
Sci Adv ; 8(46): eadd8141, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36264823

RESUMEN

Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.

20.
Nature ; 434(7033): 619-22, 2005 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15800617

RESUMEN

The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.


Asunto(s)
Medio Ambiente Extraterrestre/química , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/química , Sistema Solar , Monóxido de Carbono/análisis , Monóxido de Carbono/química , Metales/análisis , Metales/química , Meteoroides , Fotoquímica , Planetas , Actividad Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA