Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(9): e1011499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729340

RESUMEN

Over the last decade, genome-scale metabolic models have been increasingly used to study plant metabolic behaviour at the tissue and multi-tissue level under different environmental conditions. Quercus suber, also known as the cork oak tree, is one of the most important forest communities of the Mediterranean/Iberian region. In this work, we present the genome-scale metabolic model of the Q. suber (iEC7871). The metabolic model comprises 7871 genes, 6231 reactions, and 6481 metabolites across eight compartments. Transcriptomics data was integrated into the model to obtain tissue-specific models for the leaf, inner bark, and phellogen, with specific biomass compositions. The tissue-specific models were merged into a diel multi-tissue metabolic model to predict interactions among the three tissues at the light and dark phases. The metabolic models were also used to analyse the pathways associated with the synthesis of suberin monomers, namely the acyl-lipids, phenylpropanoids, isoprenoids, and flavonoids production. The models developed in this work provide a systematic overview of the metabolism of Q. suber, including its secondary metabolism pathways and cork formation.


Asunto(s)
Quercus , Quercus/genética , Quercus/metabolismo , Metabolismo Secundario , Lípidos , Madera/genética
2.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686468

RESUMEN

Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Proteína Forkhead Box O3 , Células-Madre Neurales , Animales , Ratones , Ciclo Celular , División Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/fisiología
3.
Mass Spectrom Rev ; 40(2): 126-157, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31498921

RESUMEN

Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica/métodos , Árboles/metabolismo , Eucalyptus/química , Eucalyptus/genética , Eucalyptus/metabolismo , Bosques , Genómica/métodos , Metaboloma , Pinus/química , Pinus/genética , Pinus/metabolismo , Quercus/química , Quercus/genética , Quercus/metabolismo , Estrés Fisiológico , Árboles/química , Árboles/genética
4.
J Sleep Res ; 31(2): e13496, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34617358

RESUMEN

This protocol describes an innovative study to investigate the relationship between sleep, shift work and the immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; coronavirus disease 2019 [COVID-19]) vaccination. As the COVID-19 pandemic is a global crisis with devastating health, social and economic impacts, there is a pressing need for effective vaccination programmes. Previous influenza and hepatitis vaccination studies suggest that lack of sleep can negatively alter immune responsiveness, while circadian misalignment most likely may also play an important role in the immune response to vaccination. Our present study will be the first to address this question in actual shift workers and in relation to COVID-19 vaccination. We hypothesise that the occurrence of recent night shifts and diminished sleep will negatively alter the immune response to vaccination in shift workers compared to dayworkers. We aim to recruit 50 shift workers and 50 dayworkers. Participants will receive an mRNA-based vaccination, through the Dutch vaccination programme. To assess immune responsiveness, blood will be drawn at baseline (before first vaccination), 10 days after first vaccination, the day prior to the second vaccination; and 28 days, 6 and 12 months after the second vaccination. Actigraphy and daily sleep e-diaries will be implemented for 7 days around each vaccination to assess sleep. The Pittsburgh Sleep Quality Index will be used to monitor sleep in the long term. Optimising the efficacy of the COVID-19 vaccines is of outmost importance and results of this study could provide insights to develop sleep and circadian-based interventions to enhance vaccination immunity, and thereby improve global health.


Asunto(s)
COVID-19 , Horario de Trabajo por Turnos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad , Pandemias/prevención & control , SARS-CoV-2 , Sueño
5.
Plant Cell Environ ; 44(3): 706-728, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33314160

RESUMEN

An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.


Asunto(s)
MicroARNs/metabolismo , Pinus/metabolismo , ARN de Planta/metabolismo , Deshidratación , Genes de Plantas/genética , MicroARNs/genética , Pinus/crecimiento & desarrollo , Pinus/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , ARN de Planta/genética , Transcriptoma
6.
New Phytol ; 227(1): 260-273, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32171029

RESUMEN

Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.


Asunto(s)
Fenómica , Plantas , Plantas/genética
7.
Physiol Mol Biol Plants ; 24(4): 535-549, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30042611

RESUMEN

Cork oak is the main cork-producing species worldwide, and plays a significant economic, ecological and social role in the Mediterranean countries, in particular in Portugal and Spain. The ability to produce cork is limited to a few species, hence it must involve specific regulation mechanisms that are unique to these species. However, to date, these mechanisms remain largely understudied, especially with approaches involving the use of high-throughput sequencing technology. In this study, the transcriptome of cork-producing and non-cork-producing Quercus cerris × suber hybrids was analyzed in order to elucidate the differences between the two groups of trees displaying contrasting phenotypes for cork production. The results revealed the presence of a significant number of genes exclusively associated with cork production, in the trees that developed cork. Moreover, several gene ontology subcategories, such as cell wall biogenesis, lipid metabolic processes, metal ion binding and apoplast/cell wall, were only detected in the trees with cork production. These results indicate the existence, at the transcriptome level, of mechanisms that seem to be unique and necessary for cork production, which is an advancement in our knowledge regarding the genetic regulation behind cork formation and production.

8.
BMC Plant Biol ; 15: 158, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26109289

RESUMEN

BACKGROUND: Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. RESULTS: A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. CONCLUSIONS: To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.


Asunto(s)
Quercus/embriología , Quercus/genética , Semillas/embriología , Semillas/genética , Transcriptoma/genética , Transporte Biológico/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transducción de Señal/genética , Agua
9.
Breast Cancer Res Treat ; 152(1): 119-128, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26050156

RESUMEN

The anti-estrogen tamoxifen is characterized by a large variability in response, partly due to pharmacokinetic differences. We examined circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Pharmacokinetic analysis was performed in mice, dosed at six different times (24-h period). Tissue samples were used for mRNA expression analysis of drug-metabolizing enzymes. In patients, a cross-over study was performed. During three 24-h periods, after tamoxifen dosing at 8 a.m., 1 p.m., and 8 p.m., for at least 4 weeks, blood samples were collected for pharmacokinetic measurements. Differences in tamoxifen pharmacokinetics between administration times were assessed. The mRNA expression of drug-metabolizing enzymes showed circadian variation in mouse tissues. Tamoxifen exposure seemed to be highest after administration at midnight. In humans, marginal differences were observed in pharmacokinetic parameters between morning and evening administration. Tamoxifen C(max )and area under the curve (AUC)0-8 h were 20 % higher (P < 0.001), and tamoxifen t(max) was shorter (2.1 vs. 8.1 h; P = 0.001), indicating variation in absorption. Systemic exposure (AUC0-24 h) to endoxifen was 15 % higher (P < 0.001) following morning administration. The results suggest that dosing time is of marginal influence on tamoxifen pharmacokinetics. Our study was not designed to detect potential changes in clinical outcome or toxicity, based on a difference in the time of administration. Circadian rhythm may be one of the many determinants of the interpatient and intrapatient pharmacokinetic variability of tamoxifen.


Asunto(s)
Antineoplásicos Hormonales/farmacocinética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/fisiopatología , Ritmo Circadiano , Moduladores Selectivos de los Receptores de Estrógeno/farmacocinética , Tamoxifeno/farmacocinética , Adulto , Animales , Neoplasias de la Mama/genética , Estudios Cruzados , Sistema Enzimático del Citocromo P-450/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Persona de Mediana Edad , Farmacogenética
10.
BMC Genomics ; 15: 371, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24885229

RESUMEN

BACKGROUND: Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. RESULTS: We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. CONCLUSIONS: This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.


Asunto(s)
Etiquetas de Secuencia Expresada , Quercus/genética , Transcriptoma , ADN de Plantas/análisis , Biblioteca de Genes , Filogenia , Quercus/crecimiento & desarrollo , Análisis de Secuencia de ADN
11.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960280

RESUMEN

Among the many factors affecting general health and resilience to disease, lifestyle is at the same time the most controllable and the most influential factor [...].


Asunto(s)
Ejercicio Físico , Estilo de Vida Saludable , Humanos , Dieta , Sueño , Enfermedad Crónica
12.
J Biol Rhythms ; 38(5): 476-491, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37357746

RESUMEN

Epidemiological studies associate night shift work with increased breast cancer risk. However, the underlying mechanisms are not clearly understood. To better understand these mechanisms, animal models that mimic the human situation of different aspects of shift work are needed. In this study, we used "timed sleep restriction" (TSR) cages to simulate clockwise and counterclockwise rotating shift work schedules and investigated predicted sleep patterns and mammary tumor development in breast tumor-prone female p53R270H©/+WAPCre mice. We show that TSR cages are effective in disturbing normal activity and estimated sleep patterns. Although circadian rhythms were not shifted, we observed effects of the rotating schedules on sleep timing and sleep duration. Sleep loss during a simulated shift was partly compensated after the shift and also partly during the free days. No effects were observed on body weight gain and latency time of breast cancer development. In summary, our study shows that the TSR cages can be used to model shift work in mice and affect patterns of activity and sleep. The effect of disturbing sleep patterns on carcinogenesis needs to be further investigated.


Asunto(s)
Neoplasias , Horario de Trabajo por Turnos , Humanos , Ratones , Femenino , Animales , Proteína p53 Supresora de Tumor/genética , Ritmo Circadiano , Sueño , Modelos Animales de Enfermedad , Tolerancia al Trabajo Programado
13.
Sci Rep ; 12(1): 2022, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132155

RESUMEN

Night shift work is associated with increased health risks. Here we examined the association of metabolic risk factors and immune cell counts, with both night shift work and particular characteristics thereof: frequency, duration and consecutive night shifts. We performed a cross-sectional study using data from 10,201 non-shift workers and 1062 night shift workers of the Lifelines Cohort study. Linear regression analyses, adjusted for demographic, lifestyle and occupational factors, were used to study associations of night shift work characteristics with metabolic risk factors and immune cell counts. Night shift workers had an increased BMI, waist circumference and immune cell counts compared to non-shift workers. This was especially seen in night shift workers who had a higher frequency of night shifts per month (≥ 5: BMI: B = 0.81 kg/m2 (95%-CI = 0.43-1.10); waist circumference: B = 1.58 cm (95%-Cl = 0.34-1.71; leukocytes: B = 0.19 × 109 cells/L (95%-CI = 0.04-0.34 × 109)) and worked more consecutive night shifts (> 3: BMI: B = 0.92 kg/m2 (95%-CI = 0.41-1.43); waist circumference: B = 1.85 cm (95%-Cl = 0.45-3.24); leukocytes: B = 0.32 × 109 cells/L (95%-CI = 0.09-0.55 × 109)). This association was less pronounced in long-term night shift workers (≥ 20 years). Our findings provide evidence for the association between night shift work characteristics and BMI, waist circumference and leukocytes (including, monocytes, lymphocytes, and basophil granulocytes).


Asunto(s)
Inmunidad Celular , Recuento de Leucocitos , Salud Laboral , Horario de Trabajo por Turnos/efectos adversos , Tolerancia al Trabajo Programado/fisiología , Índice de Masa Corporal , Estudios de Cohortes , Estudios Transversales , Factores de Riesgo , Factores de Tiempo , Circunferencia de la Cintura
14.
Nutrients ; 13(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960096

RESUMEN

The term social jetlag is used to describe the discrepancy between biological time, determined by our internal body clock, and social times, mainly dictated by social obligations such as school or work. In industrialized countries, two-thirds of the studying/working population experiences social jetlag, often for several years. Described for the first time in 2006, a considerable effort has been put into understanding the effects of social jetlag on human physiopathology, yet our understanding of this phenomenon is still very limited. Due to its high prevalence, social jetlag is becoming a primary concern for public health. This review summarizes current knowledge regarding social jetlag, social jetlag associated behavior (e.g., unhealthy eating patterns) and related risks for human health.


Asunto(s)
Trastornos Cronobiológicos/fisiopatología , Trastornos Cronobiológicos/psicología , Ritmo Circadiano/fisiología , Salud , Trastornos Cronobiológicos/etiología , Conducta Alimentaria , Femenino , Humanos , Conocimiento , Estilo de Vida , Masculino , Salud Pública , Riesgo , Instituciones Académicas , Sueño , Conducta Social , Factores de Tiempo , Trabajo
15.
J Mol Biol ; 432(12): 3515-3524, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32304699

RESUMEN

Circadian control of cell division is well established in diverse organisms. Recent single-cell studies on mouse fibroblasts have shown that the circadian clock and cell cycle systems are robustly phase-coupled in a bidirectional manner. In healthy cells, coupling of clock and cell cycle results in timed mitosis and rhythmic DNA replication. However, little is known about the interplay between these two oscillators in cancer cells, which often display de-regulated cell proliferation and circadian gene expression. Here we review the molecular organization of the circadian clock and the cell cycle, as well as the reciprocal interaction between the circadian clock and the cell cycle in normal and in cancer cells. Understanding how the circadian clock and cell cycle are coupled in cancer cells will be instrumental to optimally take advantage of chronotherapy in cancer treatment, as efficiency of therapy benefits from asynchrony in timed mitosis between the host and the malignant cells in order to predict the optimal time of treatment.


Asunto(s)
Ciclo Celular/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mitosis/genética , Animales , Proliferación Celular/genética , Replicación del ADN/genética , Humanos , Ratones , Análisis de la Célula Individual
16.
Tree Physiol ; 40(2): 129-141, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31860724

RESUMEN

Cork cambium (or phellogen) is a secondary meristem responsible for the formation of phelloderm and phellem/cork, which together compose the periderm. In Quercus suber L., the phellogen is active throughout the entire life of the tree, producing a continuous and renewable outer bark of cork. To identify specific candidate genes associated with cork cambium activity and phellem differentiation, we performed a comparative transcriptomic study of Q. suber secondary growth tissues (xylem and phellogen/phellem) using RNA-seq. The present work provides a high-resolution map of all the transcripts identified in the phellogen/phellem tissues. A total of 6013 differentially expressed genes were identified, with 2875 of the transcripts being specifically enriched during the cork formation process versus secondary xylem formation. Furthermore, cork samples originating from the original phellogen (`virgin' cork) and from a traumatic phellogen (`amadia' cork) were also compared. Our results point to a shortlist of potentially relevant candidate genes regulating phellogen activity and phellem differentiation, including novel genes involved in the suberization process, as well as genes associated to ethylene and jasmonate signaling and to meristem function. The future functional characterization of some of the identified candidate genes will help to elucidate the molecular mechanisms underlying cork cambium activity and phellem differentiation.


Asunto(s)
Quercus/genética , Cámbium/genética , Perfilación de la Expresión Génica , Transcriptoma , Xilema/genética
17.
Nutrients ; 12(8)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759654

RESUMEN

BACKGROUND: Breastfeeding is considered the most optimal mode of feeding for neonates and mothers. Human milk changes over the course of lactation in order to perfectly suit the infant's nutritional and immunological needs. Its composition also varies throughout the day. Circadian fluctuations in some bioactive components are suggested to transfer chronobiological information from mother to child to assist the development of the biological clock. This review aims to give a complete overview of studies examining human milk components found to exhibit circadian variation in their concentration. METHODS: We included studies assessing the concentration of a specific human milk component more than once in 24 h. Study characteristics, including gestational age, lactational stage, sampling strategy, analytical method, and outcome were extracted. Methodological quality was graded using a modified Newcastle-Ottawa Scale (NOS). RESULTS: A total of 83 reports assessing the circadian variation in the concentration of 71 human milk components were included. Heterogeneity among studies was high. The methodological quality varied widely. Significant circadian variation is found in tryptophan, fats, triacylglycerol, cholesterol, iron, melatonin, cortisol, and cortisone. This may play a role in the child's growth and development in terms of the biological clock.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Fenómenos Fisiológicos Nutricionales del Lactante , Lactancia/fisiología , Leche Humana/química , Adulto , Lactancia Materna , Femenino , Humanos , Lactante , Recién Nacido , Masculino
18.
Database (Oxford) ; 20202020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33382885

RESUMEN

Quercus suber (cork oak) is an evergreen tree native to the Mediterranean basin, which plays a key role in the ecology and economy of this area. Over the last decades, this species has gone through an observable decline, mostly due to environmental factors. Deciphering the mechanisms of cork oak's response to the environment and getting a deep insight into its biology are crucial to counteract biotic and abiotic stresses compromising the stability of a unique ecosystem. In the light of these setbacks, the publication of the genome in 2018 was a major step towards understanding the genetic make-up of this species. In an effort to integrate this information in a comprehensive, accessible and intuitive format, we have developed The Cork Oak Genome Database Portal (CorkOakDB). The CorkOakDB is supported by the BioData.pt e-infrastructure, the Portuguese ELIXIR node for biological data. The portal gives public access to search and explore the curated genomic and transcriptomic data on this species. Moreover, CorkOakDB provides a user-friendly interface and functional tools to help the research community take advantage of the increased accessibility to genomic information. A study case is provided to highlight the functionalities of the portal. CorkOakDB guarantees the update, curation and data collection, aiming to collect data besides the genetic/genomic information, in order to become the main repository in cork oak research. Database URL: http://corkoakdb.org/.


Asunto(s)
Quercus , Ecosistema , Quercus/genética , Transcriptoma , Árboles
19.
Front Plant Sci ; 11: 309, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265962

RESUMEN

Epidemics of coffee leaf rust (CLR) leads to great yield losses and huge depreciation of coffee marketing values, if no control measures are applied. Societal expectations of a more sustainable coffee production are increasingly imposing the replacement of fungicide treatments by alternative solutions. A protection strategy is to take advantage of the plant immune system by eliciting constitutive defenses. Based on such concept, plant resistance inducers (PRIs) have been developed. The Greenforce CuCa formulation, similarly to acibenzolar-S-methyl (ASM), shows promising results in the control of CLR (Hemileia vastatrix) in Coffea arabica cv. Mundo Novo. The molecular mechanisms of PRIs action are poorly understood. In order to contribute to its elucidation a proteomic, physiological (leaf gas-exchange) and biochemical (enzymatic) analyses were performed. Coffee leaves treated with Greenforce CuCa and ASM and inoculation with H. vastatrix were considered. Proteomics revealed that both PRIs lead to metabolic adjustments but, inducing distinct proteins. These proteins were related with photosynthesis, protein metabolism and stress responses. Greenforce CuCa increased photosynthesis and stomatal conductance, while ASM caused a decrease in these parameters. It was further observed that Greenforce CuCa reinforces the redox homeostasis of the leaf, while ASM seems to affect preferentially the secondary metabolism and the stress-related proteins. So, the PRIs prepare the plant to resist CLR but, inducing different defense mechanisms upon pathogen infection. The existence of a link between the primary metabolism and defense responses was evidenced. The identification of components of the plant primary metabolism, essential for plant growth and development that, simultaneously, participate in the plant defense responses can open new perspectives for plant breeding programs.

20.
Proteomics ; 9(17): 4154-75, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19688748

RESUMEN

Proteins from potato (Solanum tuberosum L.) tuber slices, related to the wound-healing process, were separated by 2-DE and identified by an MS analysis in MS and MS/MS mode. Slicing triggered differentiation processes that lead to changes in metabolism, activation of defence and cell-wall reinforcement. Proteins related to storage, cell growth and division, cell structure, signal transduction, energy production, disease/defence mechanisms and secondary metabolism were detected. Image analysis of the 2-DE gels revealed a time-dependent change in the complexity of the polypeptide patterns. By microscopic observation the polyalyphatic domain of suberin was clearly visible by D4, indicating that a closing layer (primary suberisation) was formed by then. A PCA of the six sampling dates revealed two time phases, D0-D2 and D4-D8, with a border position between D2 and D4. Moreover, a PCA of differentially expressed proteins indicated the existence of a succession of proteomic events leading to wound-periderm reconstruction. Some late-expressed proteins (D6-D8), including a suberisation-associated anionic peroxidase, have also been identified in the native periderm. Despite this, protein patterns of D8 slices and native periderm were still different, suggesting that the processes of wound-periderm formation are extended in time and not fully equivalent. The information presented in this study gives clues for further work on wound healing-periderm formation processes.


Asunto(s)
Enfermedades de las Plantas , Tubérculos de la Planta/metabolismo , Proteómica , Solanum tuberosum/metabolismo , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Espectrometría de Masas , Péptidos/química , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Tubérculos de la Planta/citología , Análisis de Componente Principal , Solanum tuberosum/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA