Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Acad Emerg Med ; 22(9): 1076-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26300010

RESUMEN

BACKGROUND: Use of electronic clinical decision support (eCDS) has been recommended to improve implementation of clinical decision rules. Many eCDS tools, however, are designed and implemented without taking into account the context in which clinical work is performed. Implementation of the pediatric traumatic brain injury (TBI) clinical decision rule at one Level I pediatric emergency department includes an electronic questionnaire triggered when ordering a head computed tomography using computerized physician order entry (CPOE). Providers use this CPOE tool in less than 20% of trauma resuscitation cases. A human factors engineering approach could identify the implementation barriers that are limiting the use of this tool. OBJECTIVES: The objective was to design a pediatric TBI eCDS tool for trauma resuscitation using a human factors approach. The hypothesis was that clinical experts will rate a usability-enhanced eCDS tool better than the existing CPOE tool for user interface design and suitability for clinical use. METHODS: This mixed-methods study followed usability evaluation principles. Pediatric emergency physicians were surveyed to identify barriers to using the existing eCDS tool. Using standard trauma resuscitation protocols, a hierarchical task analysis of pediatric TBI evaluation was developed. Five clinical experts, all board-certified pediatric emergency medicine faculty members, then iteratively modified the hierarchical task analysis until reaching consensus. The software team developed a prototype eCDS display using the hierarchical task analysis. Three human factors engineers provided feedback on the prototype through a heuristic evaluation, and the software team refined the eCDS tool using a rapid prototyping process. The eCDS tool then underwent iterative usability evaluations by the five clinical experts using video review of 50 trauma resuscitation cases. A final eCDS tool was created based on their feedback, with content analysis of the evaluations performed to ensure all concerns were identified and addressed. RESULTS: Among 26 EPs (76% response rate), the main barriers to using the existing tool were that the information displayed is redundant and does not fit clinical workflow. After the prototype eCDS tool was developed based on the trauma resuscitation hierarchical task analysis, the human factors engineers rated it to be better than the CPOE tool for nine of 10 standard user interface design heuristics on a three-point scale. The eCDS tool was also rated better for clinical use on the same scale, in 84% of 50 expert-video pairs, and was rated equivalent in the remainder. Clinical experts also rated barriers to use of the eCDS tool as being low. CONCLUSIONS: An eCDS tool for diagnostic imaging designed using human factors engineering methods has improved perceived usability among pediatric emergency physicians.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/terapia , Sistemas de Apoyo a Decisiones Clínicas , Servicio de Urgencia en Hospital , Resucitación/métodos , Preescolar , Hospitales Pediátricos , Humanos , Lactante , Diseño de Software , Factores de Tiempo , Tomografía Computarizada por Rayos X
2.
J Ther Ultrasound ; 2: 6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24921047

RESUMEN

BACKGROUND: The eye's unique anatomy and its physiological and anatomical barriers can limit effective drug delivery into the eye. METHODS: An in vivo study was designed to determine the effectiveness and safety of ultrasound application in enhancing drug delivery in a rabbit model. Permeability of a steroid ophthalmic drug, dexamethasone sodium phosphate, was investigated in ultrasound- and sham-treated cases. For this study, an eye cup filled with dexamethasone sodium phosphate was placed on the cornea. Ultrasound was applied at intensity of 0.8 W/cm(2) and frequency of 400 or 600 kHz for 5 min. The drug concentration in aqueous humor samples, collected 90 min after the treatment, was determined using chromatography methods. Light microscopy observations were done to determine the structural changes in the cornea as a result of ultrasound application. RESULTS: An increase in drug concentration in aqueous humor samples of 2.8 times (p < 0.05) with ultrasound application at 400 kHz and 2.4 times (p < 0.01) with ultrasound application at 600 kHz was observed as compared to sham-treated samples. Histological analysis showed that the structural changes in the corneas exposed to ultrasound predominantly consisted of minor epithelial disorganization. CONCLUSIONS: Ultrasound application enhanced the delivery of an anti-inflammatory ocular drug, dexamethasone sodium phosphate, through the cornea in vivo. Ultrasound-enhanced ocular drug delivery appears to be a promising area of research with a potential future application in a clinical setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA