Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurol ; 31(6): e16258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407533

RESUMEN

BACKGROUND: Multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) show a high prevalence and rapid progression of dysphagia, which is associated with reduced survival. Despite this, the evidence base for gastrostomy is poor, and the optimal frequency and outcomes of this intervention are not known. We aimed to characterise the prevalence and outcomes of gastrostomy in patients with these three atypical parkinsonian disorders. METHOD: We analysed data from the natural history and longitudinal cohorts of the PROSPECT-M-UK study with up to 60 months of follow-up from baseline. Survival post-gastrostomy was analysed using Kaplan-Meier survival curves. RESULTS: In a total of 339 patients (mean age at symptom onset 63.3 years, mean symptom duration at baseline 4.6 years), dysphagia was present in >50% across all disease groups at baseline and showed rapid progression during follow-up. Gastrostomy was recorded as recommended in 44 (13%) and performed in 21 (6.2%; MSA 7, PSP 11, CBS 3) of the total study population. Median survival post-gastrostomy was 24 months compared with 12 months where gastrostomy was recommended but not done (p = 0.008). However, this was not significant when correcting for age and duration of symptoms at the time of procedure or recommendation. CONCLUSIONS: Gastrostomy was performed relatively infrequently in this cohort despite the high prevalence of dysphagia. Survival post-gastrostomy was longer than previously reported, but further data on other outcomes and clinician and patient perspectives would help to guide use of this intervention in MSA, PSP and CBS.


Asunto(s)
Trastornos de Deglución , Gastrostomía , Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Persona de Mediana Edad , Masculino , Femenino , Anciano , Estudios Longitudinales , Parálisis Supranuclear Progresiva/cirugía , Atrofia de Múltiples Sistemas/cirugía , Atrofia de Múltiples Sistemas/epidemiología , Trastornos Parkinsonianos/cirugía , Trastornos Parkinsonianos/epidemiología , Trastornos de Deglución/etiología , Trastornos de Deglución/epidemiología , Estudios de Cohortes , Resultado del Tratamiento , Progresión de la Enfermedad
2.
Brain ; 146(8): 3232-3242, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36975168

RESUMEN

The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.


Asunto(s)
Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Masculino , Humanos , Persona de Mediana Edad , Anciano , Femenino , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/tratamiento farmacológico , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Imagen por Resonancia Magnética , Reino Unido
3.
Am J Hum Genet ; 106(3): 412-421, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142645

RESUMEN

Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification.


Asunto(s)
Edad de Inicio , Alelos , Encefalopatías/genética , Calcinosis/genética , Moléculas de Adhesión Celular/genética , Genes Recesivos , Adolescente , Adulto , Animales , Encefalopatías/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Niño , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje
4.
Brain ; 145(12): 4398-4408, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35903017

RESUMEN

Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.


Asunto(s)
Atrofia de Múltiples Sistemas , Humanos , Estudios de Cohortes , Estudios Transversales , Filamentos Intermedios , Proteínas de Neurofilamentos , Biomarcadores , Progresión de la Enfermedad
5.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768210

RESUMEN

VPS13D is one of four human homologs of the vacuolar sorting protein 13 gene (VPS13). Biallelic pathogenic variants in the gene are associated with spastic ataxia or spastic paraplegia. Here, we report two patients with intronic pathogenic variants: one patient with early onset severe spastic ataxia and debilitating tremor, which is compound-heterozygous for a canonical (NM_018156.4: c.2237-1G > A) and a non-canonical (NM_018156.4: c.941+3G>A) splice site variant. The second patient carries the same non-canonical splice site variant in the homozygous state and is affected by late-onset spastic paraplegia. We confirmed altered splicing as a result of the intronic variants and demonstrated disturbed mitochondrial integrity. Notably, tremor in the first patient improved significantly by bilateral deep brain stimulation (DBS) in the ventralis intermedius (VIM) nucleus of the thalamus. We also conducted a literature review and summarized the phenotypical spectrum of reported VPS13D-related disorders. Our study underscores that looking for mutations outside the canonical splice sites is important not to miss a genetic diagnosis, especially in disorders with a highly heterogeneous presentation without specific red flags.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Temblor , Paraplejía , Mutación , Proteínas/genética , Linaje
6.
Pract Neurol ; 23(3): 208-221, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36927875

RESUMEN

This is a practical guide to diagnosing and managing multiple system atrophy (MSA). We explain the newly published Movement Disorders Society Consensus Diagnostic Criteria, which include new 'Clinically Established MSA' and 'Possible Prodromal MSA' categories, hopefully reducing time to diagnosis. We then highlight the key clinical features of MSA to aid diagnosis. We include a list of MSA mimics with suggested methods of differentiation from MSA. Lastly, we discuss practical symptom management in people living with MSA, including balancing side effects, with the ultimate aim of improving quality of life.


Asunto(s)
Atrofia de Múltiples Sistemas , Humanos , Atrofia de Múltiples Sistemas/diagnóstico , Atrofia de Múltiples Sistemas/terapia , Calidad de Vida , Diagnóstico Diferencial
7.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33704825

RESUMEN

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Preescolar , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del Exoma , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-35577512

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) have variable rates of progression. More accurate prediction of progression could improve selection for clinical trials. Although some variance in clinical progression can be predicted by age at onset and phenotype, we hypothesise that this can be further improved by blood biomarkers. OBJECTIVE: To determine if blood biomarkers (serum neurofilament light (NfL) and genetic status (glucocerebrosidase, GBA and apolipoprotein E (APOE))) are useful in addition to clinical measures for prognostic modelling in PD. METHODS: We evaluated the relationship between serum NfL and baseline and longitudinal clinical measures as well as patients' genetic (GBA and APOE) status. We classified patients as having a favourable or an unfavourable outcome based on a previously validated model, and explored how blood biomarkers compared with clinical variables in distinguishing prognostic phenotypes . RESULTS: 291 patients were assessed in this study. Baseline serum NfL was associated with baseline cognitive status. Nfl predicted a shorter time to dementia, postural instability and death (dementia-HR 2.64; postural instability-HR 1.32; mortality-HR 1.89) whereas APOEe4 status was associated with progression to dementia (dementia-HR 3.12, 95% CI 1.63 to 6.00). NfL levels and genetic variables predicted unfavourable progression to a similar extent as clinical predictors. The combination of clinical, NfL and genetic data produced a stronger prediction of unfavourable outcomes compared with age and gender (area under the curve: 0.74-age/gender vs 0.84-ALL p=0.0103). CONCLUSIONS: Clinical trials of disease-modifying therapies might usefully stratify patients using clinical, genetic and NfL status at the time of recruitment.

9.
Mov Disord ; 36(1): 251-255, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33026126

RESUMEN

BACKGROUND: The objective of this study was to determine the prevalence of the GGC-repeat expansion in NOTCH2NLC in whites presenting with movement disorders. METHODS: We searched for the GGC-repeat expansion in NOTCH2NLC using repeat-primed polymerase chain reaction in 203 patients with essential tremor, 825 patients with PD, 194 patients with spinocerebellar ataxia, 207 patients with "possible" or "probable" MSA, and 336 patients with pathologically confirmed MSA. We also screened 30,008 patients enrolled in the 100,000 Genomes Project for the same mutation using ExpansionHunter, followed by repeat-primed polymerase chain reaction. All possible expansions were confirmed by Southern blotting and/or long-read sequencing. RESULTS: We identified 1 patient who carried the NOTCH2NLC mutation in the essential tremor cohort, and 1 patient presenting with recurrent encephalopathy and postural tremor/parkinsonism in the 100,000 Genomes Project. CONCLUSIONS: GGC-repeat expansion in NOTCH2NLC is rare in whites presenting with movement disorders. In addition, existing whole-genome sequencing data are useful in case ascertainment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Temblor Esencial , Cuerpos de Inclusión Intranucleares , Estudios de Cohortes , Temblor Esencial/epidemiología , Temblor Esencial/genética , Humanos , Prevalencia , Expansión de Repetición de Trinucleótido
10.
Am J Hum Genet ; 100(6): 969-977, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575651

RESUMEN

Progressive limb spasticity and cerebellar ataxia are frequently found together in clinical practice and form a heterogeneous group of degenerative disorders that are classified either as pure spastic ataxia or as complex spastic ataxia with additional neurological signs. Inheritance is either autosomal dominant or autosomal recessive. Hypomyelinating features on MRI are sometimes seen with spastic ataxia, but this is usually mild in adults and severe and life limiting in children. We report seven individuals with an early-onset spastic-ataxia phenotype. The individuals come from three families of different ethnic backgrounds. Affected members of two families had childhood onset disease with very slow progression. They are still alive in their 30s and 40s and show predominant ataxia and cerebellar atrophy features on imaging. Affected members of the third family had a similar but earlier-onset presentation associated with brain hypomyelination. Using a combination of homozygozity mapping and exome sequencing, we mapped this phenotype to deleterious nonsense or homeobox domain missense mutations in NKX6-2. NKX6-2 encodes a transcriptional repressor with early high general and late focused CNS expression. Deficiency of its mouse ortholog results in widespread hypomyelination in the brain and optic nerve, as well as in poor motor coordination in a pattern consistent with the observed human phenotype. In-silico analysis of human brain expression and network data provides evidence that NKX6-2 is involved in oligodendrocyte maturation and might act within the same pathways of genes already associated with central hypomyelination. Our results support a non-redundant developmental role of NKX6-2 in humans and imply that NKX6-2 mutations should be considered in the differential diagnosis of spastic ataxia and hypomyelination.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/complicaciones , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas de Homeodominio/genética , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Espasticidad Muscular/complicaciones , Espasticidad Muscular/genética , Mutación/genética , Atrofia Óptica/complicaciones , Atrofia Óptica/genética , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/genética , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Adulto , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiportadores/genética , Encéfalo/embriología , Encéfalo/metabolismo , Niño , Femenino , Redes Reguladoras de Genes , Proteínas de Homeodominio/química , Humanos , Lactante , Masculino , Linaje , Fenotipo , Adulto Joven
11.
Ann Neurol ; 86(2): 225-240, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31187503

RESUMEN

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.


Asunto(s)
Mutación/genética , Polineuropatías/tratamiento farmacológico , Polineuropatías/genética , Piridoxal Quinasa/genética , Fosfato de Piridoxal/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Suplementos Dietéticos , Femenino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Resultado del Tratamiento
12.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235485

RESUMEN

Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease.


Asunto(s)
Ceruloplasmina/deficiencia , Ceruloplasmina/genética , Trastornos del Metabolismo del Hierro/genética , Enfermedades Neurodegenerativas/genética , Adulto , Anciano , Diagnóstico Precoz , Femenino , Humanos , Trastornos del Metabolismo del Hierro/diagnóstico , Trastornos del Metabolismo del Hierro/patología , Hígado/patología , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/patología
13.
J Neurol Neurosurg Psychiatry ; 90(7): 768-773, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30867224

RESUMEN

OBJECTIVE: The high degree of clinical overlap between atypical parkinsonian syndromes (APS) and Parkinson's disease (PD) makes diagnosis challenging. We aimed to identify novel diagnostic protein biomarkers of APS using multiplex proximity extension assay (PEA) testing. METHODS: Cerebrospinal fluid (CSF) samples from two independent cohorts, each consisting of APS and PD cases, and controls, were analysed for neurofilament light chain (NF-L) and Olink Neurology and Inflammation PEA biomarker panels. Whole-cohort comparisons of biomarker concentrations were made between APS (n=114), PD (n=37) and control (n=34) groups using logistic regression analyses that included gender, age and disease duration as covariates. RESULTS: APS versus controls analyses revealed 11 CSF markers with significantly different levels in cases and controls (p<0.002). Four of these markers also reached significance (p<0.05) in APS versus PD analyses. Disease-specific analyses revealed lower group levels of FGF-5, FGF-19 and SPOCK1 in multiple system atrophy compared with progressive supranuclear palsy and corticobasal syndrome. Receiver operating characteristic curve analyses suggested that the diagnostic accuracy of NF-L was superior to the significant PEA biomarkers in distinguishing APS, PD and controls. The biological processes regulated by the significant proteins include cell differentiation and immune cell migration. Delta and notch-like epidermal growth factor-related receptor (DNER) had the strongest effect size in APS versus controls and APS versus PD analyses. DNER is highly expressed in substantia nigra and is an activator of the NOTCH1 pathway which has been implicated in the aetiology of other neurodegenerative disorders including Alzheimer's disease. CONCLUSIONS: PEA testing has identified potential novel diagnostic biomarkers of APS.


Asunto(s)
Inmunoensayo/métodos , Enfermedad de Parkinson/líquido cefalorraquídeo , Trastornos Parkinsonianos/líquido cefalorraquídeo , Factores de Edad , Anciano , Biomarcadores/líquido cefalorraquídeo , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Trastornos Parkinsonianos/diagnóstico , Factores Sexuales
14.
Mov Disord ; 33(3): 359-371, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29508456

RESUMEN

The discovery of genetic links between alpha-synuclein and PD has opened unprecedented opportunities for research into a new group of diseases, now collectively known as synucleinopathies. Autonomic dysfunction, including cardiac sympathetic denervation, has been reported in familial forms of synucleinopathies that have Lewy bodies at the core of their pathogenesis. SNCA mutations and multiplications, LRRK2 disease with Lewy bodies as well as other common, sporadic forms of idiopathic PD, MSA, pure autonomic failure, and dementia with Lewy bodies have all been associated with dysautonomia. By contrast, in familial cases of parkinsonism without Lewy bodies, such as in PARK2, the autonomic profile remains normal throughout the course of the disease. The degeneration of the central and peripheral autonomic systems in genetic as well as sporadic forms of neurodegenerative synucleinopathies correlates with the accumulation of alpha-synuclein immunoreactive-containing inclusions. Given that dysautonomia has a significant impact on the quality of life of sufferers and autonomic symptoms are generally treatable, a prompt diagnostic testing and treatment should be provided. Moreover, new evidence suggests that autonomic dysfunction can be used as an outcome prediction factor in some forms of synucleinopathies or premotor diagnostic markers that could be used in the future to define further research avenues. In this review, we describe the autonomic dysfunction of genetic synucleinopathies in comparison to the dysautonomia of sporadic forms of alpha-synuclein accumulation and provide the reader with an up-to-date overview of the current understanding in this fast-growing field. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Humanos , Mutación/genética
15.
Mov Disord ; 33(7): 1119-1129, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29603387

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 14 is a rare form of autosomal dominant cerebellar ataxia caused by mutations in protein kinase Cγ gene. Clinically, it presents with a slowly progressive, mainly pure cerebellar ataxia. METHODS: Using next generation sequencing, we screened 194 families with autosomal dominant cerebellar ataxia and normal polyglutamine repeats. In-depth phenotyping was performed using validated clinical rating scales neuroimaging and electrophysiological investigations. RESULTS: We identified 25 individuals from 13 families carrying pathogenic mutations in protein kinase Cγ gene. A total of 10 unique protein kinase Cγ gene mutations have been confirmed of which 5 are novel and 5 were previously described. Our data suggest that the age at onset is highly variable; disease course is slowly progressive and rarely associated with severe disability. However, one third of patients presented with a complex ataxia comprising severe focal and/or task-induced dystonia, peripheral neuropathy, parkinsonism, myoclonus, and pyramidal syndrome. The most complex phenotype is related to a missense mutation in the catalytic domain in exon 11. CONCLUSION: We present one of the largest genetically confirmed spinocerebellar ataxia type 14 cohorts contributing novel variants and clinical characterisation. We show that although protein kinase Cγ gene mutations present mainly as slowly progressive pure ataxia, more than a third of cases had a complex phenotype. Overall, our case series extends the phenotype and suggests that protein kinase Cγ gene mutations should be considered in patients with slowly progressive autosomal dominant cerebellar ataxia, particularly when myoclonus, dystonia, or mild cognitive impairment are present in the absence of polyglutamine expansion. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía/etiología , Mutación Missense/genética , Péptidos/genética , Proteína Quinasa C/genética , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Adulto , Edad de Inicio , Anciano , Preescolar , Estudios de Cohortes , Cisteína/genética , Progresión de la Enfermedad , Salud de la Familia , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Ataxias Espinocerebelosas/diagnóstico por imagen , Adulto Joven
16.
J Neurol Neurosurg Psychiatry ; 88(8): 681-687, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28572275

RESUMEN

BACKGROUND: The hereditary spastic paraplegias (HSPs) are a rare and heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive lower limb spasticity. They are classified as either 'pure' or 'complex' where spastic paraplegia is complicated with additional neurological features. Mutations in the spastin gene (SPAST) are the most common cause of HSP and typically present with a pure form. METHODS: We assessed in detail the phenotypic and genetic spectrum of SPAST-related HSP focused on 118 patients carrying SPAST mutations. RESULTS: This study, one of the largest cohorts of genetically confirmed spastin patients to date, contributes with the discovery of a significant number of novel SPAST mutations. Our data reveal a high rate of complex cases (25%), with psychiatric disorders among the most common comorbidity (10% of all SPASTpatients). Further, we identify a genotype-phenotype correlation between patients carrying loss-of-function mutations in SPAST and the presence of psychiatric disorders.


Asunto(s)
Adenosina Trifosfatasas/genética , Análisis Mutacional de ADN , Trastornos Mentales/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Edad de Inicio , Alelos , Niño , Preescolar , Codón sin Sentido/genética , Exones/genética , Femenino , Tamización de Portadores Genéticos , Genotipo , Humanos , Lactante , Recién Nacido , Intrones/genética , Masculino , Trastornos Mentales/diagnóstico , Persona de Mediana Edad , Mutación Missense/genética , Fenotipo , Mutación Puntual/genética , Eliminación de Secuencia/genética , Paraplejía Espástica Hereditaria/diagnóstico , Espastina , Estadística como Asunto , Reino Unido , Adulto Joven
17.
Brain ; 139(Pt 7): 1904-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217339

RESUMEN

The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15 Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson's disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.


Asunto(s)
Proteínas/genética , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/fisiopatología , Adolescente , Adulto , Línea Celular , Niño , Preescolar , Estudios de Cohortes , Femenino , Fibroblastos , Humanos , Masculino , Mutación , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Tripeptidil Peptidasa 1 , Reino Unido , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA