Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7937): 733-743, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289335

RESUMEN

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Asunto(s)
Neoplasias Colorrectales , Epigenoma , Genoma Humano , Mutación , Humanos , Adenoma/genética , Adenoma/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromatina/genética , Cromatina/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Epigenoma/genética , Oncogenes/genética , Factores de Transcripción/metabolismo , Genoma Humano/genética , Interferones
2.
Nature ; 611(7937): 744-753, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289336

RESUMEN

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.


Asunto(s)
Adaptación Fisiológica , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Fenotipo , Humanos , Adaptación Fisiológica/genética , Células Clonales/metabolismo , Células Clonales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Secuenciación del Exoma , Transcripción Genética
3.
J Phys Chem A ; 127(1): 286-299, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36580040

RESUMEN

Bio-hybrid fuels are a promising solution to accomplish a carbon-neutral and low-emission future for the transportation sector. Two potential candidates are the heterocyclic acetals 1,3-dioxane (C4H8O2) and 1,3-dioxolane (C3H6O2), which can be produced from the combination of biobased feedstocks, carbon dioxide, and renewable electricity. In this work, comprehensive experimental and numerical investigations of 1,3-dioxane and 1,3-dioxolane were performed to support their application in internal combustion engines. Ignition delay times and laminar flame speeds were measured to reveal the combustion chemistry on the macroscale, while speciation measurements in a jet-stirred reactor and ethylene-based counterflow diffusion flames provided insights into combustion chemistry and pollutant formation on the microscale. Comparing the experimental and numerical data using either available or proposed kinetic models revealed that the combustion chemistry and pollutant formation differ substantially between 1,3-dioxane and 1,3-dioxolane, although their molecular structures are similar. For example, 1,3-dioxane showed higher reactivity in the low-temperature regime (500-800 K), while 1,3-dioxolane addition to ethylene increased polycyclic aromatic hydrocarbons and soot formation in high-temperature (>800 K) counterflow diffusion flames. Reaction pathway analyses were performed to examine and explain the differences between these two bio-hybrid fuels, which originate from the chemical bond dissociation energies in their molecular structures.


Asunto(s)
Dioxolanos , Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Dioxolanos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Dioxanos/análisis
4.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139020

RESUMEN

Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out from six OP carriers, which could reflect the difference in OP utilization between a P-inefficient genotype Baudin and a P-efficient genotype CN4027. The phosphorus utilization efficiency (PUE), root morphological traits, and expression of genes associated with P utilization were assessed under P deficiency or phytin treatments. P deficiency resulted in a greater root surface area and thicker roots. In barley fed with phytin as a P carrier, the APase activities of CN4027 were 2-3-fold lower than those of Baudin, while the phytase activities of CN4027 were 2-3-fold higher than those of Baudin. The PUE in CN4027 was mainly enhanced by activating phytase to improve the root absorption and utilization of Pi resulting from OP mineralization, while the PUE in Baudin was mainly enhanced by activating APase to improve the shoot reuse capacity. A phosphate transporter gene HvPHT1;8 regulated P transport from the roots to the shoots, while a purple acid phosphatase (PAP) family gene HvPAPhy_b contributed to the reuse of P in barley.


Asunto(s)
6-Fitasa , Hordeum , Fósforo/metabolismo , Hordeum/genética , Hordeum/metabolismo , 6-Fitasa/metabolismo , Ácido Fítico/metabolismo , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
5.
BMC Genomics ; 23(1): 138, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35168561

RESUMEN

BACKGROUND: Molecular breeding accelerates the speed of animal breeding. Screening molecular markers that can affect economic traits through genome-wide association studies (GWAS) can provide a theoretical basis for molecular breeding. At present, a large number of molecular markers have been screened in poultry research, but few reports on how molecular markers affect economic traits exist. It is particularly important to reveal the action mechanisms of molecular markers, which can provide more accurate information for molecular breeding. RESULTS: The aim of this study was to investigate the relationships between two indels (NUDT15-indel-2777 and NUDT15-indel-1673) in the promoter region of NUDT15 and growth and carcass traits in chickens and to explore the regulatory mechanism of NUDT15. Significant differences were found in genotype and allele frequencies among commercial broilers, commercial laying hens and dual-purpose chickens. The results of association analyses showed that these two indel loci could significantly affect growth traits, such as body weight, and carcass traits. Tissue expression profiling at E12 showed that the expression of NUDT15 was significantly higher in skeletal muscle, and time-expression profiling of leg muscle showed that the expression of NUDT15 in myoblasts was significantly higher in the E10 and E12 proliferation stages than in other stages. Promoter activity analysis showed that pro-1673-I and pro-1673-D significantly inhibited promoter activity, and the promoter activity of pro-1673-D was significantly lower than that of pro-1673-I. In addition, when NUDT15 was overexpressed or underwent interference in chicken primary myoblasts (CPMs), NUDT15 could inhibit the proliferation of CPMs. CONCLUSION: The results suggest that the studied indels in the promoter region of NUDT15 may regulate the proliferation of CPMs by affecting NUDT15 expression, ultimately affecting the growth and carcass traits of chickens. These indel polymorphisms may be used together as molecular markers for improving economic traits in chickens.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Proliferación Celular , Pollos/genética , Femenino , Genotipo , Mutación INDEL , Mioblastos , Regiones Promotoras Genéticas
6.
Anim Biotechnol ; 33(7): 1602-1612, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34032551

RESUMEN

Vestigial-like (Vgll) genes are widespread in vertebrates and play an important role in muscle development. In this study, we used bioinformatics methods to systematically identify the chicken VGLL family in the whole genome and investigated its evolutionary history and gene structure features. Tissue expression spectra combined with real-time PCR data were used to analyze the organizational expression pattern of the genes. Based on the maximum likelihood method, a phylogenetic tree of the VGLL family was constructed, and 94 VGLL genes were identified in 24 breeds, among which four VGLL family genes were identified in the chicken genome. Ten motifs were detected in the VGLL genes, and the analysis of introns combined with gene structure revealed that the family was conserved during evolution. Tissue expression analysis suggested that the expression profiles of the VGLL family genes in 16 tissues differed between LU Shi and AA broilers. In addition, a single gene (VGLL2) showed increased expression in chickens at embryonic days 10-16 and was involved in the growth and development of skeletal muscle in chickens in the embryonic stage. In summary, VGLL genes are involved in chicken muscle growth and development, which provides useful information for subsequent functional studies of VGLL genes.


Asunto(s)
Pollos , Genoma , Animales , Filogenia , Genoma/genética , Factores de Transcripción/genética , Intrones , Perfilación de la Expresión Génica/veterinaria
7.
Mol Biol Evol ; 37(4): 1007-1019, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778175

RESUMEN

The rapidity with which the mutation rate evolves could greatly impact evolutionary patterns. Nevertheless, most studies simply assume a constant rate in the time scale of interest (Kimura 1983; Drake 1991; Kumar 2005; Li 2007; Lynch 2010). In contrast, recent studies of somatic mutations suggest that the mutation rate may vary by several orders of magnitude within a lifetime (Kandoth et al. 2013; Lawrence et al. 2013). To resolve the discrepancy, we now propose a runaway model, applicable to both the germline and soma, whereby mutator mutations form a positive-feedback loop. In this loop, any mutator mutation would increase the rate of acquiring the next mutator, thus triggering a runaway escalation in mutation rate. The process can be initiated more readily if there are many weak mutators than a few strong ones. Interestingly, even a small increase in the mutation rate at birth could trigger the runaway process, resulting in unfit progeny. In slowly reproducing species, the need to minimize the risk of this uncontrolled accumulation would thus favor setting the mutation rate low. In comparison, species that starts and ends reproduction sooner do not face the risk and may set the baseline mutation rate higher. The mutation rate would evolve in response to the risk of runaway mutation, in particular, when the generation time changes. A rapidly evolving mutation rate may shed new lights on many evolutionary phenomena (Elango et al. 2006; Thomas et al. 2010, 2018; Langergraber et al. 2012; Besenbacher et al. 2019).


Asunto(s)
Modelos Genéticos , Acumulación de Mutaciones , Tasa de Mutación , Carcinogénesis/genética , Evolución Molecular , Humanos
8.
Mol Biol Evol ; 36(7): 1430-1441, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30912799

RESUMEN

In the absence of both positive and negative selections, coding sequences evolve at a neutral rate (R = 1). Such a high genomic rate is generally not achievable due to the prevalence of negative selection against codon substitutions. Remarkably, somatic evolution exhibits the seemingly neutral rate R ∼ 1 across normal and cancerous tissues. Nevertheless, R ∼ 1 may also mean that positive and negative selections are both strong, but equal in intensity. We refer to this regime as quasi-neutral. Indeed, individual genes in cancer cells often evolve at a much higher, or lower, rate than R ∼ 1. Here, we show that 1) quasi-neutrality is much more likely when populations are small (N < 50); 2) stem-cell populations in single normal tissue niches, from which tumors likely emerge, have a small N (usually <50) but selection at this stage is measurable and strong; 3) when N dips below 50, selection efficacy decreases precipitously; and 4) notably, N is smaller in the stem-cell niche of the small intestine than in the colon. Hence, the ∼70-fold higher rate of phenotypic evolution (observed as cancer risk) in the latter can be explained by the greater efficacy of selection, which then leads to the fixation of more advantageous and fewer deleterious mutations in colon cancers. In conclusion, quasi-neutral evolution sheds a new light on a general evolutionary principle that helps to explain aspects of cancer evolution.


Asunto(s)
Carcinogénesis , Evolución Molecular , Flujo Genético , Humanos , Mutación , Neoplasias/genética , Selección Genética
9.
Optom Vis Sci ; 97(12): 1080-1088, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33278187

RESUMEN

SIGNIFICANCE: Decreased expression of the retinal GJD2 gene messenger RNA (mRNA) and connexin 36 (Cx36) protein in the guinea pig negative lens-induced myopia (LIM) model suggests their involvement in local retinal circuits regulating eye growth. PURPOSE: Previous studies suggest that the GJD2 gene and Cx36 protein encoded by the GJD2 gene play important roles in retinal signaling pathways and eye development. The aim of this study was to investigate the changes in GJD2 mRNA and Cx36 protein expression in the guinea pig lens-induced myopia model. METHODS: Four-week-old guinea pigs were randomly divided into two groups. Animals in the experimental group were fitted with monocular -10 D lenses; and animals in the control group, with monocular plano lenses. Biometric measurements, including the spherical equivalent refractive error and axial length, were monitored. Animals were killed after 0, 1, 2, and 3 weeks of treatment, and their retinas were isolated. Retinal GJD2 mRNA and Cx36 protein expression levels were assessed by quantitative real-time polymerase chain reaction and Western blot analysis, respectively. RESULTS: Spherical equivalent refractive error values indicated that negative lens-treated eyes became significantly more myopic than plano lens-treated eyes (P = .001), consistent with their longer axial lengths compared with those of control eyes. Both GJD2 mRNA and Cx36 protein expression levels were decreased in the retinas of negative lens-treated eyes compared with levels in the retinas of plano lens-treated eyes, although there were differences in the timing; GJD2 mRNA, levels were significantly decreased after 1 and 2 weeks of treatment (P = .01 and P = .004, respectively), whereas Cx36 protein expression was significantly decreased after only 1 week (P = .01). CONCLUSIONS: That both retinal GJD2 mRNA and Cx36 protein expression levels were decreased after induction of myopia with negative lenses points to retinal circuits involving Cx36 in myopia development in the guinea pig.


Asunto(s)
Conexinas/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Miopía/genética , ARN Mensajero/genética , Animales , Longitud Axial del Ojo/patología , Biometría , Western Blotting , Cobayas , Miopía/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Cuerpo Vítreo/patología , Proteína delta-6 de Union Comunicante
10.
Proc Natl Acad Sci U S A ; 114(50): 13102-13107, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29183984

RESUMEN

Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500-600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound's molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

11.
Angew Chem Int Ed Engl ; 59(8): 3137-3142, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31828953

RESUMEN

Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.

13.
Int Ophthalmol ; 37(4): 1069-1072, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27628586

RESUMEN

PURPOSE: To report a patient with cyclic esotropia with a high accommodative convergence to accommodation (AC/A) ratio after surgical correction of intermittent exotropia who was found to have bilateral anomalous medial rectus muscle insertion sites. METHOD: A 5-year-old girl developed intermittent esotropia on alternating days after undergoing bilateral lateral rectus recessions for correction of intermittent exotropia. Alternate prism and cover measurement of ocular alignment and binocular function was assessed on consecutive days. Surgical correction was performed for the full amount measured on a "crossed" day. RESULT: On "straight" days, her eyes were orthotropic with normal binocular vision. Examination on "crossed" days revealed a left esotropia of 75 prism diopters (PD) at near fixation and 40 PD at distance fixation in primary gaze without fusion or stereopsis. The patient underwent bilateral medial rectus recessions in conjunction with posterior fixation sutures (MRP). During surgery, the distance from the limbus to the medial rectus muscle insertion was 3.5 mm bilaterally. Postoperatively, the cycle was broken, and the esotropia disappeared with no recurrence at the latest follow-up at 12 months. CONCLUSION: MRP is an effective procedure for correction of cyclic esotropia with a high AC/A ratio. Strabismus surgeons should design surgical strategies based on preoperative measurement of deviations at all distances and the anatomy of muscle insertions in patients with cyclic esotropia.


Asunto(s)
Acomodación Ocular/fisiología , Esotropía/etiología , Exotropía/cirugía , Músculos Oculomotores/cirugía , Procedimientos Quirúrgicos Oftalmológicos/efectos adversos , Complicaciones Posoperatorias , Visión Binocular/fisiología , Preescolar , Esotropía/diagnóstico , Esotropía/fisiopatología , Femenino , Humanos , Músculos Oculomotores/fisiopatología
14.
Front Plant Sci ; 15: 1428394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938639

RESUMEN

Fresh red waxy corn is consumed worldwide because of its unique flavor and rich nutrients, but it is susceptible to deterioration with a short shelf life. This study explored the effect of slightly acidic electrolyzed water (SAEW) treatment on the quality and antioxidant capacity of fresh red waxy corn during postharvest cold storage up to 40 d. The SAEW treatment exhibited lower weight loss, softer firmness, and higher total soluble solids (TSS) and moisture content than the control group. Correspondingly, the SAEW maintained the microstructure of endosperm cell wall and starch granules of fresh red waxy corn kernels well, contributing to good sensory quality. Furthermore, SAEW effectively reduced the accumulation of H2O2 content, elevated the O2 -· scavenging ability, maintained higher CAT and APX activities, and decreased the decline of the flavonoids and anthocyanin during the storage. These results revealed that the SAEW treatment could be a promising preservation method to maintain higher-quality attributes and the antioxidant capacity of fresh red waxy corn during postharvest cold storage.

15.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38764183

RESUMEN

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Asunto(s)
Empalme Alternativo , Pollos , Proteínas con Dominio LIM , Desarrollo de Músculos , Músculo Esquelético , Animales , Pollos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Músculo Esquelético/crecimiento & desarrollo , Desarrollo de Músculos/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Mioblastos/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Proteínas Aviares/química , Diferenciación Celular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química
16.
Commun Biol ; 7(1): 518, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698103

RESUMEN

Myoblast proliferation and differentiation are essential for skeletal muscle development. In this study, we generated the expression profiles of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in different developmental stages of chicken primary myoblasts (CPMs) using RNA sequencing (RNA-seq) technology. The dual luciferase reporter system was performed using chicken embryonic fibroblast cells (DF-1), and functional studies quantitative real-time polymerase chain reaction (qPCR), cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry cycle, RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence, and western blotting assay. Our research demonstrated that miR-301a-5p had a targeted binding ability to lncMDP1 and ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1). The results revealed that lncMDP1 regulated the proliferation and differentiation of myoblasts via regulating the miR-301a-5p/CHAC1 axis, and CHAC1 promotes muscle regeneration. This study fulfilled the molecular regulatory network of skeletal muscle development and providing an important theoretical reference for the future improvement of chicken meat performance and meat quality.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , MicroARNs , Desarrollo de Músculos , ARN Largo no Codificante , Animales , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Pollos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Mioblastos/metabolismo , Mioblastos/citología , Embrión de Pollo
17.
Food Chem ; 446: 138777, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402763

RESUMEN

Seven novel antioxidant peptides (AWF, LWQ, WIY, YLW, LAYW, LPWG, and LYFY) exhibiting a superior activity compared to trolox were identified through in silico screening. Among these, the four peptides (WIY, YLW, LAYW, and LYFY) displayed notably enhanced performance, with ABTS activity 2.58-3.26 times and ORAC activity 5.19-8.63 times higher than trolox. Quantum chemical calculations revealed that the phenolic hydroxyl group in tyrosine and the nitrogen-hydrogen bond in the indole ring of tryptophan serve as the critical sites for antioxidant activity. These findings likely account for the potent chemical antioxidant activity. The corn peptides also exerted a protective effect against AAPH-induced cytomorphologic changes in human erythrocytes by modulating the antioxidant system. Notably, LAYW exhibited the most pronounced cytoprotective effects, potentially due to its high content of hydrophobic amino acids.


Asunto(s)
Antioxidantes , Glútenes , Humanos , Antioxidantes/química , Glútenes/química , Zea mays/química , Péptidos/química , Fenoles
18.
Poult Sci ; 103(3): 103407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198913

RESUMEN

During myogenesis and regeneration, the proliferation and differentiation of myoblasts play key regulatory roles and may be regulated by many genes. In this study, we analyzed the transcriptomic data of chicken primary myoblasts at different periods of proliferation and differentiation with protein‒protein interaction network, and the results indicated that there was an interaction between cyclin-dependent kinase 1 (CDK1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Previous studies in mammals have a role for RRM2 in skeletal muscle development as well as cell growth, but the role of RRM2 in chicken is unclear. In this study, we investigated the effects of RRM2 on skeletal muscle development and regeneration in chickens in vitro and in vivo. The interaction between RRM2 and CDK1 was initially identified by co-immunoprecipitation and mass spectrometry. Through a dual luciferase reporter assay and quantitative real-time PCR, we identified the core promoter region of RRM2, which is regulated by the SP1 transcription factor. In this study, through cell counting kit-8 assays, 5-ethynyl-2'-deoxyuridine incorporation assays, flow cytometry, immunofluorescence staining, and Western blot analysis, we demonstrated that RRM2 promoted the proliferation and inhibited the differentiation of myoblasts. In vivo studies showed that RRM2 reduced the diameter of muscle fibers and slowed skeletal muscle regeneration. In conclusion, these data provide preliminary insights into the biological functions of RRM2 in chicken muscle development and skeletal muscle regeneration.


Asunto(s)
Pollos , Oxidorreductasas , Animales , Pollos/genética , Fibras Musculares Esqueléticas , Proliferación Celular , Regeneración , Mamíferos
19.
Foods ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540809

RESUMEN

The nonantimicrobial properties and relatively poor mechanical properties of hydroxyethyl cellulose (HEC) limit its use in packaging. Sulfated rice bran polysaccharides (SRBP) possess significant antioxidant and antimicrobial activities. The purpose of this study was to investigate the effect of different concentrations of SRBP on the physical and mechanical properties and the functional characteristics of HEC/SRBP films. The physical properties of the HEC/20% SRBP films, such as water resistance, water vapor barrier, light barrier, and tensile strength, improved significantly (p < 0.05) compared with those of the HEC films. Scanning electron microscopy and Fourier transform infrared spectrometry showed that HEC formed hydrogen bonds with SRBP and exhibited better compatibility. Thermogravimetric analysis revealed that the addition of SRBP was beneficial to the thermal stability of the films. In addition, the antioxidant and bacteriostatic properties of the films were enhanced by the addition of SRBP to HEC, with the 20% SRBP films showing the most significant enhancement in activity. Therefore, the HEC/20% SRBP films show potential for development for use as active food packaging.

20.
Int J Biol Macromol ; 259(Pt 2): 129229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211913

RESUMEN

The medicinal Dendrobium species of Orchidaceae possess significant pharmaceutical value, and modern pharmacological research has shown that Dendrobium contains many important active ingredients. Alkaloids, the crucial components of medicinal Dendrobium, demonstrate beneficial healing properties in cardiovascular, cataract, gastrointestinal, and respiratory diseases. Members of the cytochrome P450 monooxygenase (CYP) gene family play essential roles in alkaloid synthesis, participating in alkaloid terpene skeleton construction and subsequent modifications. Although studies of the CYP family have been conducted in some species, genome-wide characterization and systematic analysis of the CYP family in medicinal Dendrobium remain underexplored. In this study, we identified CYP gene family members in the genomes of four medicinal Dendrobium species recorded in the Pharmacopoeia: D. nobile, D. chrysotoxum, D. catenatum, and D. huoshanense. Further, we analyzed the motif composition, gene replication events, and selection pressure of this family. Syntenic analysis revealed that members of the clan 710 were present on chromosome 18 in three medicinal Dendrobium species, except for D. nobile, indicating a loss of clan 710 occurring in D. nobile. We also conducted an initial screening of the CYP genes involved in alkaloid synthesis through transcriptome sequencing. Quantitative real-time reverse transcription PCR showed that the expression of DnoNew43 and DnoNew50, homologs of secologanin synthase involved in the alkaloid synthesis pathway, was significantly higher in the stems than in the leaves. This result coincided with the distribution of dendrobine content in Dendrobium stems and leaves, indicating that these two genes might be involved in the dendrobine synthesis pathway. Our results give insights into the CYP gene family evolution analysis in four medicinal Dendrobium species for the first time and identify two related genes that may be involved in alkaloid synthesis, providing a valuable resource for further investigations into alkaloid synthesis pathway in Dendrobium and other medicinal plants.


Asunto(s)
Alcaloides , Dendrobium , Dendrobium/genética , Alcaloides/genética , Alcaloides/análisis , Vías Biosintéticas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA